亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a logic-informed knowledge-driven modeling framework for human movements by analyzing their trajectories. Our approach is inspired by the fact that human actions are usually driven by their intentions or desires, and are influenced by environmental factors such as the spatial relationships with surrounding objects. In this paper, we introduce a set of spatial-temporal logic rules as knowledge to explain human actions. These rules will be automatically discovered from observational data. To learn the model parameters and the rule content, we design an expectation-maximization (EM) algorithm, which treats the rule content as latent variables. The EM algorithm alternates between the E-step and M-step: in the E-step, the posterior distribution over the latent rule content is evaluated; in the M-step, the rule generator and model parameters are jointly optimized by maximizing the current expected log-likelihood. Our model may have a wide range of applications in areas such as sports analytics, robotics, and autonomous cars, where understanding human movements are essential. We demonstrate the model's superior interpretability and prediction performance on pedestrian and NBA basketball player datasets, both achieving promising results.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Gossip協議 · Continuity · Principle · Performance ·
2023 年 8 月 14 日

Traditionally, peer-to-peer systems have relied on altruism and reciprocity. Although incentive-based models have gained prominence in new-generation peer-to-peer systems, it is essential to recognize the continued importance of cooperative principles in achieving performance, fairness, and correctness. The lack of this acknowledgment has paved the way for selfish peers to gain unfair advantages in these systems. As such, we address the challenge of selfish peers by devising a mechanism to reward sustained cooperation. Instead of relying on global accountability mechanisms, we propose a protocol that naturally aggregates local evaluations of cooperation. Traditional mechanisms are often vulnerable to Sybil and misreporting attacks. However, our approach overcomes these issues by limiting the benefits selfish peers can gain without incurring any cost. The viability of our algorithm is proven with a deployment to 27,259 Internet users and a realistic simulation of a blockchain gossip protocol. We show that our protocol sustains cooperation even in the presence of a majority of selfish peers while incurring only negligible overhead.

3D scene graph prediction is a task that aims to concurrently predict object classes and their relationships within a 3D environment. As these environments are primarily designed by and for humans, incorporating commonsense knowledge regarding objects and their relationships can significantly constrain and enhance the prediction of the scene graph. In this paper, we investigate the application of commonsense knowledge graphs for 3D scene graph prediction on point clouds of indoor scenes. Through experiments conducted on a real-world indoor dataset, we demonstrate that integrating external commonsense knowledge via the message-passing method leads to a 15.0 % improvement in scene graph prediction accuracy with external knowledge and $7.96\%$ with internal knowledge when compared to state-of-the-art algorithms. We also tested in the real world with 10 frames per second for scene graph generation to show the usage of the model in a more realistic robotics setting.

When labeled data is insufficient, semi-supervised learning with the pseudo-labeling technique can significantly improve the performance of automatic speech recognition. However, pseudo-labels are often noisy, containing numerous incorrect tokens. Taking noisy labels as ground-truth in the loss function results in suboptimal performance. Previous works attempted to mitigate this issue by either filtering out the nosiest pseudo-labels or improving the overall quality of pseudo-labels. While these methods are effective to some extent, it is unrealistic to entirely eliminate incorrect tokens in pseudo-labels. In this work, we propose a novel framework named alternative pseudo-labeling to tackle the issue of noisy pseudo-labels from the perspective of the training objective. The framework comprises several components. Firstly, a generalized CTC loss function is introduced to handle noisy pseudo-labels by accepting alternative tokens in the positions of incorrect tokens. Applying this loss function in pseudo-labeling requires detecting incorrect tokens in the predicted pseudo-labels. In this work, we adopt a confidence-based error detection method that identifies the incorrect tokens by comparing their confidence scores with a given threshold, thus necessitating the confidence score to be discriminative. Hence, the second proposed technique is the contrastive CTC loss function that widens the confidence gap between the correctly and incorrectly predicted tokens, thereby improving the error detection ability. Additionally, obtaining satisfactory performance with confidence-based error detection typically requires extensive threshold tuning. Instead, we propose an automatic thresholding method that uses labeled data as a proxy for determining the threshold, thus saving the pain of manual tuning.

Recently, methods for skeleton-based human activity recognition have been shown to be vulnerable to adversarial attacks. However, these attack methods require either the full knowledge of the victim (i.e. white-box attacks), access to training data (i.e. transfer-based attacks) or frequent model queries (i.e. black-box attacks). All their requirements are highly restrictive, raising the question of how detrimental the vulnerability is. In this paper, we show that the vulnerability indeed exists. To this end, we consider a new attack task: the attacker has no access to the victim model or the training data or labels, where we coin the term hard no-box attack. Specifically, we first learn a motion manifold where we define an adversarial loss to compute a new gradient for the attack, named skeleton-motion-informed (SMI) gradient. Our gradient contains information of the motion dynamics, which is different from existing gradient-based attack methods that compute the loss gradient assuming each dimension in the data is independent. The SMI gradient can augment many gradient-based attack methods, leading to a new family of no-box attack methods. Extensive evaluation and comparison show that our method imposes a real threat to existing classifiers. They also show that the SMI gradient improves the transferability and imperceptibility of adversarial samples in both no-box and transfer-based black-box settings.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司