Weakly supervised learning has emerged as a compelling tool for object detection by reducing the need for strong supervision during training. However, major challenges remain: (1) differentiation of object instances can be ambiguous; (2) detectors tend to focus on discriminative parts rather than entire objects; (3) without ground truth, object proposals have to be redundant for high recalls, causing significant memory consumption. Addressing these challenges is difficult, as it often requires to eliminate uncertainties and trivial solutions. To target these issues we develop an instance-aware and context-focused unified framework. It employs an instance-aware self-training algorithm and a learnable Concrete DropBlock while devising a memory-efficient sequential batch back-propagation. Our proposed method achieves state-of-the-art results on COCO ($12.1\% ~AP$, $24.8\% ~AP_{50}$), VOC 2007 ($54.9\% ~AP$), and VOC 2012 ($52.1\% ~AP$), improving baselines by great margins. In addition, the proposed method is the first to benchmark ResNet based models and weakly supervised video object detection. Code, models, and more details will be made available at: //github.com/NVlabs/wetectron.
Semi-supervised learning (SSL) has a potential to improve the predictive performance of machine learning models using unlabeled data. Although there has been remarkable recent progress, the scope of demonstration in SSL has mainly been on image classification tasks. In this paper, we propose STAC, a simple yet effective SSL framework for visual object detection along with a data augmentation strategy. STAC deploys highly confident pseudo labels of localized objects from an unlabeled image and updates the model by enforcing consistency via strong augmentations. We propose experimental protocols to evaluate the performance of semi-supervised object detection using MS-COCO and show the efficacy of STAC on both MS-COCO and VOC07. On VOC07, STAC improves the AP$^{0.5}$ from $76.30$ to $79.08$; on MS-COCO, STAC demonstrates $2{\times}$ higher data efficiency by achieving 24.38 mAP using only 5\% labeled data than supervised baseline that marks 23.86\% using 10\% labeled data. The code is available at //github.com/google-research/ssl_detection/.
Weakly supervised object localization is a challenging task in which the object of interest should be localized while learning its appearance. State-of-the-art methods recycle the architecture of a standard CNN by using the activation maps of the last layer for localizing the object. While this approach is simple and works relatively well, object localization relies on different features than classification, thus, a specialized localization mechanism is required during training to improve performance. In this paper, we propose a convolutional, multi-scale spatial localization network that provides accurate localization for the object of interest. Experimental results on CUB-200-2011 and ImageNet datasets show that our proposed approach provides competitive performance for weakly supervised localization.
Few-shot learning (FSL) aims to learn novel visual categories from very few samples, which is a challenging problem in real-world applications. Many methods of few-shot classification work well on general images to learn global representation. However, they can not deal with fine-grained categories well at the same time due to a lack of subtle and local information. We argue that localization is an efficient approach because it directly provides the discriminative regions, which is critical for both general classification and fine-grained classification in a low data regime. In this paper, we propose a Self-Attention Based Complementary Module (SAC Module) to fulfill the weakly-supervised object localization, and more importantly produce the activated masks for selecting discriminative deep descriptors for few-shot classification. Based on each selected deep descriptor, Semantic Alignment Module (SAM) calculates the semantic alignment distance between the query and support images to boost classification performance. Extensive experiments show our method outperforms the state-of-the-art methods on benchmark datasets under various settings, especially on the fine-grained few-shot tasks. Besides, our method achieves superior performance over previous methods when training the model on miniImageNet and evaluating it on the different datasets, demonstrating its superior generalization capacity. Extra visualization shows the proposed method can localize the key objects more interval.
Pixel-wise clean annotation is necessary for fully-supervised semantic segmentation, which is laborious and expensive to obtain. In this paper, we propose a weakly supervised 2D semantic segmentation model by incorporating sparse bounding box labels with available 3D information, which is much easier to obtain with advanced sensors. We manually labeled a subset of the 2D-3D Semantics(2D-3D-S) dataset with bounding boxes, and introduce our 2D-3D inference module to generate accurate pixel-wise segment proposal masks. Guided by 3D information, we first generate a point cloud of objects and calculate objectness probability score for each point. Then we project the point cloud with objectness probabilities back to 2D images followed by a refinement step to obtain segment proposals, which are treated as pseudo labels to train a semantic segmentation network. Our method works in a recursive manner to gradually refine the above-mentioned segment proposals. Extensive experimental results on the 2D-3D-S dataset show that the proposed method can generate accurate segment proposals when bounding box labels are available on only a small subset of training images. Performance comparison with recent state-of-the-art methods further illustrates the effectiveness of our method.
Object detection models perform well at localizing and classifying objects that they are shown during training. However, due to the difficulty and cost associated with creating and annotating detection datasets, trained models detect a limited number of object types with unknown objects treated as background content. This hinders the adoption of conventional detectors in real-world applications like large-scale object matching, visual grounding, visual relation prediction, obstacle detection (where it is more important to determine the presence and location of objects than to find specific types), etc. We propose class-agnostic object detection as a new problem that focuses on detecting objects irrespective of their object-classes. Specifically, the goal is to predict bounding boxes for all objects in an image but not their object-classes. The predicted boxes can then be consumed by another system to perform application-specific classification, retrieval, etc. We propose training and evaluation protocols for benchmarking class-agnostic detectors to advance future research in this domain. Finally, we propose (1) baseline methods and (2) a new adversarial learning framework for class-agnostic detection that forces the model to exclude class-specific information from features used for predictions. Experimental results show that adversarial learning improves class-agnostic detection efficacy.
In this paper, we propose a novel self-supervised representation learning method, Self-EMD, for object detection. Our method directly trained on unlabeled non-iconic image dataset like COCO, instead of commonly used iconic-object image dataset like ImageNet. We keep the convolutional feature maps as the image embedding to preserve spatial structures and adopt Earth Mover's Distance (EMD) to compute the similarity between two embeddings. Our Faster R-CNN (ResNet50-FPN) baseline achieves 39.8% mAP on COCO, which is on par with the state of the art self-supervised methods pre-trained on ImageNet. More importantly, it can be further improved to 40.4% mAP with more unlabeled images, showing its great potential for leveraging more easily obtained unlabeled data. Code will be made available.
Despite the importance of unsupervised object detection, to the best of our knowledge, there is no previous work addressing this problem. One main issue, widely known to the community, is that object boundaries derived only from 2D image appearance are ambiguous and unreliable. To address this, we exploit LiDAR clues to aid unsupervised object detection. By exploiting the 3D scene structure, the issue of localization can be considerably mitigated. We further identify another major issue, seldom noticed by the community, that the long-tailed and open-ended (sub-)category distribution should be accommodated. In this paper, we present the first practical method for unsupervised object detection with the aid of LiDAR clues. In our approach, candidate object segments based on 3D point clouds are firstly generated. Then, an iterative segment labeling process is conducted to assign segment labels and to train a segment labeling network, which is based on features from both 2D images and 3D point clouds. The labeling process is carefully designed so as to mitigate the issue of long-tailed and open-ended distribution. The final segment labels are set as pseudo annotations for object detection network training. Extensive experiments on the large-scale Waymo Open dataset suggest that the derived unsupervised object detection method achieves reasonable accuracy compared with that of strong supervision within the LiDAR visible range. Code shall be released.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.
As we move towards large-scale object detection, it is unrealistic to expect annotated training data for all object classes at sufficient scale, and so methods capable of unseen object detection are required. We propose a novel zero-shot method based on training an end-to-end model that fuses semantic attribute prediction with visual features to propose object bounding boxes for seen and unseen classes. While we utilize semantic features during training, our method is agnostic to semantic information for unseen classes at test-time. Our method retains the efficiency and effectiveness of YOLO for objects seen during training, while improving its performance for novel and unseen objects. The ability of state-of-art detection methods to learn discriminative object features to reject background proposals also limits their performance for unseen objects. We posit that, to detect unseen objects, we must incorporate semantic information into the visual domain so that the learned visual features reflect this information and leads to improved recall rates for unseen objects. We test our method on PASCAL VOC and MS COCO dataset and observed significant improvements on the average precision of unseen classes.
Weakly supervised object detection has recently received much attention, since it only requires image-level labels instead of the bounding-box labels consumed in strongly supervised learning. Nevertheless, the save in labeling expense is usually at the cost of model accuracy. In this paper, we propose a simple but effective weakly supervised collaborative learning framework to resolve this problem, which trains a weakly supervised learner and a strongly supervised learner jointly by enforcing partial feature sharing and prediction consistency. For object detection, taking WSDDN-like architecture as weakly supervised detector sub-network and Faster-RCNN-like architecture as strongly supervised detector sub-network, we propose an end-to-end Weakly Supervised Collaborative Detection Network. As there is no strong supervision available to train the Faster-RCNN-like sub-network, a new prediction consistency loss is defined to enforce consistency of predictions between the two sub-networks as well as within the Faster-RCNN-like sub-networks. At the same time, the two detectors are designed to partially share features to further guarantee the model consistency at perceptual level. Extensive experiments on PASCAL VOC 2007 and 2012 data sets have demonstrated the effectiveness of the proposed framework.