亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Privacy preserving data analysis (PPDA) has received increasing attention due to a great variety of applications. Local differential privacy (LDP), as an emerging standard that is suitable for PPDA, has been widely deployed into various real-world scenarios to analyze massive data while protecting against many forms of privacy breach. In this study, we are mainly concerned with piecewise transformation technique (PTT) for analyzing numerical data under local differential privacy. We provide a principled framework for PTT in the context of LDP, based on which PTT is studied systematically. As a result, we show that (1) many members in PTTs are asymptotically optimal when used to obtain an unbiased estimator for mean of numerical data, and (2) for a given privacy budget, there is PTT that reaches the theoretical low bound with respect to variance. Next, we prove by studying two classes of PTTs in detail that (1) there do not exist optimal PTTs compared to the well-used technique, i.e., Duchi's scheme, in terms of the consistency noisy variance, (2) on the other hand, one has the ability to find a great number of PTTs that are consistently more optimal than the latter with regard to the worst-case noisy variance, which is never reported so far. When we are restricted to consider only the high privacy level, enough PTTs turn out to be optimal than the well-known Laplace mechanism. Lastly, we prove that for a family of PTTs, the correspondingly theoretical low bound of noisy variance follows $O(\epsilon^{-2})$ when considering the high privacy level.

相關內容

In modern data analysis, sparse model selection becomes inevitable once the number of predictors variables is very high. It is well-known that model selection procedures like the Lasso or Boosting tend to overfit on real data. The celebrated Stability Selection overcomes these weaknesses by aggregating models, based on subsamples of the training data, followed by choosing a stable predictor set which is usually much sparser than the predictor sets from the raw models. The standard Stability Selection is based on a global criterion, namely the per-family error rate, while additionally requiring expert knowledge to suitably configure the hyperparameters. Since model selection depends on the loss function, i.e., predictor sets selected w.r.t. some particular loss function differ from those selected w.r.t. some other loss function, we propose a Stability Selection variant which respects the chosen loss function via an additional validation step based on out-of-sample validation data, optionally enhanced with an exhaustive search strategy. Our Stability Selection variants are widely applicable and user-friendly. Moreover, our Stability Selection variants can avoid the issue of severe underfitting which affects the original Stability Selection for noisy high-dimensional data, so our priority is not to avoid false positives at all costs but to result in a sparse stable model with which one can make predictions. Experiments where we consider both regression and binary classification and where we use Boosting as model selection algorithm reveal a significant precision improvement compared to raw Boosting models while not suffering from any of the mentioned issues of the original Stability Selection.

It is known that when the statistical models are singular, i.e., the Fisher information matrix at the true parameter is degenerate, the fixed step-size gradient descent algorithm takes polynomial number of steps in terms of the sample size $n$ to converge to a final statistical radius around the true parameter, which can be unsatisfactory for the application. To further improve that computational complexity, we consider the utilization of the second-order information in the design of optimization algorithms. Specifically, we study the normalized gradient descent (NormGD) algorithm for solving parameter estimation in parametric statistical models, which is a variant of gradient descent algorithm whose step size is scaled by the maximum eigenvalue of the Hessian matrix of the empirical loss function of statistical models. When the population loss function, i.e., the limit of the empirical loss function when $n$ goes to infinity, is homogeneous in all directions, we demonstrate that the NormGD iterates reach a final statistical radius around the true parameter after a logarithmic number of iterations in terms of $n$. Therefore, for fixed dimension $d$, the NormGD algorithm achieves the optimal overall computational complexity $\mathcal{O}(n)$ to reach the final statistical radius. This computational complexity is cheaper than that of the fixed step-size gradient descent algorithm, which is of the order $\mathcal{O}(n^{\tau})$ for some $\tau > 1$, to reach the same statistical radius. We illustrate our general theory under two statistical models: generalized linear models and mixture models, and experimental results support our prediction with general theory.

Simulator-based models are models for which the likelihood is intractable but simulation of synthetic data is possible. They are often used to describe complex real-world phenomena, and as such can often be misspecified in practice. Unfortunately, existing Bayesian approaches for simulators are known to perform poorly in those cases. In this paper, we propose a novel algorithm based on the posterior bootstrap and maximum mean discrepancy estimators. This leads to a highly-parallelisable Bayesian inference algorithm with strong robustness properties. This is demonstrated through an in-depth theoretical study which includes generalisation bounds and proofs of frequentist consistency and robustness of our posterior. The approach is then assessed on a range of examples including a g-and-k distribution and a toggle-switch model.

Sparse Principal Component Analysis (PCA) is a prevalent tool across a plethora of subfields of applied statistics. While several results have characterized the recovery error of the principal eigenvectors, these are typically in spectral or Frobenius norms. In this paper, we provide entrywise $\ell_{2,\infty}$ bounds for Sparse PCA under a general high-dimensional subgaussian design. In particular, our results hold for any algorithm that selects the correct support with high probability, those that are sparsistent. Our bound improves upon known results by providing a finer characterization of the estimation error, and our proof uses techniques recently developed for entrywise subspace perturbation theory.

We extend a previous framework for designing differentially private (DP) mechanisms via randomized graph colorings that was restricted to binary functions, corresponding to colorings in a graph, to multi-valued functions. As before, datasets are nodes in the graph and any two neighboring datasets are connected by an edge. In our setting, we assume each dataset has a preferential ordering for the possible outputs of the mechanism, which we refer to as a rainbow. Different rainbows partition the graph of datasets into different regions. We show that when the DP mechanism is pre-specified at the boundary of such regions, at most one optimal mechanism can exist. Moreover, if the mechanism is to behave identically for all same-rainbow boundary datasets, the problem can be greatly simplified and solved by means of a morphism to a line graph. We then show closed form expressions for the line graph in the case of ternary functions. Treatment of ternary queries in this paper displays enough richness to be extended to higher-dimensional query spaces with preferential query ordering, but the optimality proof does not seem to follow directly from the ternary proof.

This paper studies the minimum weight set cover (MinWSC) problem with a {\em small neighborhood cover} (SNC) property proposed by Agarwal {\it et al.} in \cite{Agarwal.}. A parallel algorithm for MinWSC with $\tau$-SNC property is presented, obtaining approximation ratio $\tau(1+3\varepsilon)$ in $O(L\log_{1+\varepsilon}\frac{n^3}{\varepsilon^2}+ 4\tau^{3}2^\tau L^2\log n)$ rounds, where $0< \varepsilon <\frac{1}{2}$ is a constant, $n$ is the number of elements, and $L$ is a parameter related to SNC property. Our results not only improve the approximation ratio obtained in \cite{Agarwal.}, but also answer two questions proposed in \cite{Agarwal.}.

In the present work we tackle the problem of finding the optimal price tariff to be set by a risk-averse electric retailer participating in the pool and whose customers are price-sensitive. We assume that the retailer has access to a sufficiently large smart-meter dataset from which it can statistically characterize the relationship between the tariff price and the demand load of its clients. Three different models are analyzed to predict the aggregated load as a function of the electricity prices and other parameters, as humidity or temperature. More specifically, we train linear regression (predictive) models to forecast the resulting demand load as a function of the retail price. Then we will insert this model in a quadratic optimization problem which evaluates the optimal price to be offered. This optimization problem accounts for different sources of uncertainty including consumer's response, pool prices and renewable source availability, and relies on a stochastic and risk-averse formulation. In particular, one important contribution of this work is to base the scenario generation and reduction procedure on the statistical properties of the resulting predictive model. This allows us to properly quantify (data-driven) not only the expected value but the level of uncertainty associated with the main problem parameters. Moreover, we consider both standard forward based contracts and the recently introduced power purchase agreement contracts as risk-hedging tools for the retailer. The results are promising as profits are found for the retailer with highly competitive prices and some possible improvements are shown if richer datasets could be available in the future. A realistic case study and multiple sensitivity analyses have been performed to characterize the risk-aversion behavior of the retailer considering price-sensitive consumers.

Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.

Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司