亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the relationship between the underlying structure of posets and the spectral and combinatorial properties of their higher-order random walks. While fast mixing of random walks on hypergraphs has led to myriad breakthroughs throughout theoretical computer science in the last five years, many other important applications (e.g. locally testable codes, 2-2 games) rely on the more general non-simplicial structures. These works make it clear that the global expansion properties of posets depend strongly on their underlying architecture (e.g. simplicial, cubical, linear algebraic), but the overall phenomenon remains poorly understood. In this work, we quantify the advantage of different architectures, highlighting how structural regularity controls the spectral decay and edge-expansion of corresponding random walks. In particular, we show the spectra of walks on expanding posets (Dikstein, Dinur, Filmus, Harsha RANDOM 2018) concentrate in strips around a small number of approximate eigenvalues controlled by the poset's regularity. This gives a simple condition to identify architectures (e.g. the Grassmann) that exhibit fast (exponential) decay of eigenvalues, versus architectures like hypergraphs with slow (linear) decay -- a crucial distinction in applications to hardness of approximation and agreement testing such as the recent proof of the 2-2 Games Conjecture (Khot, Minzer, Safra FOCS 2018). We show these results lead to a tight variance-based characterization of edge-expansion on eposets generalizing (Bafna, Hopkins, Kaufman, and Lovett (SODA 2022)), and pay special attention to the case of the Grassmann where we show our results are tight for a natural set of sparsifications of the Grassmann graphs. We note for clarity that our results do not recover the characterization used in the proof of the 2-2 Games Conjecture which relies on $\ell_\infty$ rather than $\ell_2$-structure.

相關內容

We present the conditional determinantal point process (DPP) approach to obtain new (mostly Fredholm determinantal) expressions for various eigenvalue statistics in random matrix theory. It is well-known that many (especially $\beta=2$) eigenvalue $n$-point correlation functions are given in terms of $n\times n$ determinants, i.e., they are continuous DPPs. We exploit a derived kernel of the conditional DPP which gives the $n$-point correlation function conditioned on the event of some eigenvalues already existing at fixed locations. Using such kernels we obtain new determinantal expressions for the joint densities of the $k$ largest eigenvalues, probability density functions of the $k^\text{th}$ largest eigenvalue, density of the first eigenvalue spacing, and more. Our formulae are highly amenable to numerical computations and we provide various numerical experiments. Several numerical values that required hours of computing time could now be computed in seconds with our expressions, which proves the effectiveness of our approach. We also demonstrate that our technique can be applied to an efficient sampling of DR paths of the Aztec diamond domino tiling. Further extending the conditional DPP sampling technique, we sample Airy processes from the extended Airy kernel. Additionally we propose a sampling method for non-Hermitian projection DPPs.

In this paper we discuss potentially practical ways to produce expander graphs with good spectral properties and a compact description. We focus on several classes of uniform and bipartite expander graphs defined as random Schreier graphs of the general linear group over the finite field of size two. We perform numerical experiments and show that such constructions produce spectral expanders that can be useful for practical applications. To find a theoretical explanation of the observed experimental results, we used the method of moments to prove upper bounds for the expected second largest eigenvalue of the random Schreier graphs used in our constructions. We focus on bounds for which it is difficult to study the asymptotic behaviour but it is possible to compute non-trivial conclusions for relatively small graphs with parameters from our numerical experiments (e.g., with less than 2^200 vertices and degree at least logarithmic in the number of vertices).

1. Species distribution models and maps from large-scale biodiversity data are necessary for conservation management. One current issue is that biodiversity data are prone to taxonomic misclassifications. Methods to account for these misclassifications in multispecies distribution models have assumed that the classification probabilities are constant throughout the study. In reality, classification probabilities are likely to vary with several covariates. Failure to account for such heterogeneity can lead to bias in parameter estimates. 2. Here we present a general multispecies distribution model that accounts for heterogeneity in the classification process. The proposed model assumes a multinomial generalised linear model for the classification confusion matrix. We compare the performance of the heterogeneous classification model to that of the homogeneous classification model by assessing how well they estimate the parameters in the model and their predictive performance on hold-out samples. We applied the model to gull data from Norway, Denmark and Finland, obtained from GBIF. 3. Our simulation study showed that accounting for heterogeneity in the classification process increased precision by 30% and reduced accuracy and recall by 6%. Applying the model framework to the gull dataset did not improve the predictive performance between the homogeneous and heterogeneous models due to the smaller misclassified sample sizes. However, when machine learning predictive scores are used as weights to inform the species distribution models about the classification process, the precision increases by 70%. 4. We recommend multiple multinomial regression to be used to model the variation in the classification process when the data contains relatively larger misclassified samples. Machine prediction scores should be used when the data contains relatively smaller misclassified samples.

Gradient clipping is a popular modification to standard (stochastic) gradient descent, at every iteration limiting the gradient norm to a certain value $c >0$. It is widely used for example for stabilizing the training of deep learning models (Goodfellow et al., 2016), or for enforcing differential privacy (Abadi et al., 2016). Despite popularity and simplicity of the clipping mechanism, its convergence guarantees often require specific values of $c$ and strong noise assumptions. In this paper, we give convergence guarantees that show precise dependence on arbitrary clipping thresholds $c$ and show that our guarantees are tight with both deterministic and stochastic gradients. In particular, we show that (i) for deterministic gradient descent, the clipping threshold only affects the higher-order terms of convergence, (ii) in the stochastic setting convergence to the true optimum cannot be guaranteed under the standard noise assumption, even under arbitrary small step-sizes. We give matching upper and lower bounds for convergence of the gradient norm when running clipped SGD, and illustrate these results with experiments.

We study the problems of sequential nonparametric two-sample and independence testing. Sequential tests process data online and allow using observed data to decide whether to stop and reject the null hypothesis or to collect more data while maintaining type I error control. We build upon the principle of (nonparametric) testing by betting, where a gambler places bets on future observations and their wealth measures evidence against the null hypothesis. While recently developed kernel-based betting strategies often work well on simple distributions, selecting a suitable kernel for high-dimensional or structured data, such as text and images, is often nontrivial. To address this drawback, we design prediction-based betting strategies that rely on the following fact: if a sequentially updated predictor starts to consistently determine (a) which distribution an instance is drawn from, or (b) whether an instance is drawn from the joint distribution or the product of the marginal distributions (the latter produced by external randomization), it provides evidence against the two-sample or independence nulls respectively. We empirically demonstrate the superiority of our tests over kernel-based approaches under structured settings. Our tests can be applied beyond the case of independent and identically distributed data, remaining valid and powerful even when the data distribution drifts over time.

A great deal of research has been conducted in the consideration of meta-heuristic optimisation methods that are able to find global optima in settings that gradient based optimisers have traditionally struggled. Of these, so-called particle swarm optimisation (PSO) approaches have proven to be highly effective in a number of application areas. Given the maturity of the PSO field, it is likely that novel variants of the PSO algorithm stand to offer only marginal gains in terms of performance -- there is, after all, no free lunch. Instead of only chasing performance on suites of benchmark optimisation functions, it is argued herein that research effort is better placed in the pursuit of algorithms that also have other useful properties. In this work, a highly-general, interpretable variant of the PSO algorithm -- particle attractor algorithm (PAO) -- is proposed. Furthermore, the algorithm is designed such that the transition densities (describing the motions of the particles from one generation to the next) can be computed exactly in closed form for each step. Access to closed-form transition densities has important ramifications for the closely-related field of Sequential Monte Carlo (SMC). In order to demonstrate that the useful properties do not come at the cost of performance, PAO is compared to several other state-of-the art heuristic optimisation algorithms in a benchmark comparison study.

Stratification in both the design and analysis of randomized clinical trials is common. Despite features in automated randomization systems to re-confirm the stratifying variables, incorrect values of these variables may be entered. These errors are often detected during subsequent data collection and verification. Questions remain about whether to use the mis-reported initial stratification or the corrected values in subsequent analyses. It is shown that the likelihood function resulting from the design of randomized clinical trials supports the use of the corrected values. New definitions are proposed that characterize misclassification errors as `ignorable' and `non-ignorable'. Ignorable errors may depend on the correct strata and any other modeled baseline covariates, but they are otherwise unrelated to potential treatment outcomes. Data management review suggests most misclassification errors are arbitrarily produced by distracted investigators, so they are ignorable or at most weakly dependent on measured and unmeasured baseline covariates. Ignorable misclassification errors may produce a small increase in standard errors, but other properties of the planned analyses are unchanged (e.g., unbiasedness, confidence interval coverage). It is shown that unbiased linear estimation in the absence of misclassification errors remains unbiased when there are non-ignorable misclassification errors, and the corresponding confidence intervals based on the corrected strata values are conservative.

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.

The area of Data Analytics on graphs promises a paradigm shift as we approach information processing of classes of data, which are typically acquired on irregular but structured domains (social networks, various ad-hoc sensor networks). Yet, despite its long history, current approaches mostly focus on the optimization of graphs themselves, rather than on directly inferring learning strategies, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. To fill this void, we first revisit graph topologies from a Data Analytics point of view, and establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral analysis of graphs, whereby the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices are shown to convey physical meaning related to both graph topology and higher-order graph properties, such as cuts, walks, paths, and neighborhoods. Next, to illustrate estimation strategies performed on graph signals, spectral analysis of graphs is introduced through eigenanalysis of mathematical descriptors of graphs and in a generic way. Finally, a framework for vertex clustering and graph segmentation is established based on graph spectral representation (eigenanalysis) which illustrates the power of graphs in various data association tasks. The supporting examples demonstrate the promise of Graph Data Analytics in modeling structural and functional/semantic inferences. At the same time, Part I serves as a basis for Part II and Part III which deal with theory, methods and applications of processing Data on Graphs and Graph Topology Learning from data.

北京阿比特科技有限公司