We consider the setting of repeated fair division between two players, denoted Alice and Bob, with private valuations over a cake. In each round, a new cake arrives, which is identical to the ones in previous rounds. Alice cuts the cake at a point of her choice, while Bob chooses the left piece or the right piece, leaving the remainder for Alice. We consider two versions: sequential, where Bob observes Alice's cut point before choosing left/right, and simultaneous, where he only observes her cut point after making his choice. The simultaneous version was first considered by Aumann and Maschler (1995). We observe that if Bob is almost myopic and chooses his favorite piece too often, then he can be systematically exploited by Alice through a strategy akin to a binary search. This strategy allows Alice to approximate Bob's preferences with increasing precision, thereby securing a disproportionate share of the resource over time. We analyze the limits of how much a player can exploit the other one and show that fair utility profiles are in fact achievable. Specifically, the players can enforce the equitable utility profile of $(1/2, 1/2)$ in the limit on every trajectory of play, by keeping the other player's utility to approximately $1/2$ on average while guaranteeing they themselves get at least approximately $1/2$ on average. We show this theorem using a connection with Blackwell approachability. Finally, we analyze a natural dynamic known as fictitious play, where players best respond to the empirical distribution of the other player. We show that fictitious play converges to the equitable utility profile of $(1/2, 1/2)$ at a rate of $O(1/\sqrt{T})$.
Challenge the champ tournaments are one of the simplest forms of competition, where a (initially selected) champ is repeatedly challenged by other players. If a player beats the champ, then that player is considered the new (current) champ. Each player in the competition challenges the current champ once in a fixed order. The champ of the last round is considered the winner of the tournament. We investigate a setting where players can be bribed to lower their winning probability against the initial champ. The goal is to maximize the probability of the initial champ winning the tournament by bribing the other players, while not exceeding a given budget for the bribes. Mattei et al. [Journal of Applied Logic, 2015] showed that the problem can be solved in pseudo-polynomial time, and that it is in XP when parameterized by the number of players. We show that the problem is weakly NP-hard and W[1]-hard when parameterized by the number of players. On the algorithmic side, we show that the problem is fixed-parameter tractable when parameterized either by the number of different bribe values or the number of different probability values. To this end, we establish several results that are of independent interest. In particular, we show that the product knapsack problem is W[1]-hard when parameterized by the number of items in the knapsack, and that constructive bribery for cup tournaments is W[1]-hard when parameterized by the number of players. Furthermore, we present a novel way of designing mixed integer linear programs, ensuring optimal solutions where all variables are integers.
In collaborative goal-oriented settings, the participants are not only interested in achieving a successful outcome, but do also implicitly negotiate the effort they put into the interaction (by adapting to each other). In this work, we propose a challenging interactive reference game that requires two players to coordinate on vision and language observations. The learning signal in this game is a score (given after playing) that takes into account the achieved goal and the players' assumed efforts during the interaction. We show that a standard Proximal Policy Optimization (PPO) setup achieves a high success rate when bootstrapped with heuristic partner behaviors that implement insights from the analysis of human-human interactions. And we find that a pairing of neural partners indeed reduces the measured joint effort when playing together repeatedly. However, we observe that in comparison to a reasonable heuristic pairing there is still room for improvement -- which invites further research in the direction of cost-sharing in collaborative interactions.
This paper studies Ebert's hat problem for three and four players and two colors, where the probabilities of the colors may be different for each player. Our goal is to maximize the probability of winning the game and to describe winning strategies We use the concept of an adequate set. The construction of adequate sets is independent of underlying probabilities and we can use this fact in the analysis of our general case.
Visual detection of Micro Air Vehicles (MAVs) has attracted increasing attention in recent years due to its important application in various tasks. The existing methods for MAV detection assume that the training set and testing set have the same distribution. As a result, when deployed in new domains, the detectors would have a significant performance degradation due to domain discrepancy. In this paper, we study the problem of cross-domain MAV detection. The contributions of this paper are threefold. 1) We propose a Multi-MAV-Multi-Domain (M3D) dataset consisting of both simulation and realistic images. Compared to other existing datasets, the proposed one is more comprehensive in the sense that it covers rich scenes, diverse MAV types, and various viewing angles. A new benchmark for cross-domain MAV detection is proposed based on the proposed dataset. 2) We propose a Noise Suppression Network (NSN) based on the framework of pseudo-labeling and a large-to-small training procedure. To reduce the challenging pseudo-label noises, two novel modules are designed in this network. The first is a prior-based curriculum learning module for allocating adaptive thresholds for pseudo labels with different difficulties. The second is a masked copy-paste augmentation module for pasting truly-labeled MAVs on unlabeled target images and thus decreasing pseudo-label noises. 3) Extensive experimental results verify the superior performance of the proposed method compared to the state-of-the-art ones. In particular, it achieves mAP of 46.9%(+5.8%), 50.5%(+3.7%), and 61.5%(+11.3%) on the tasks of simulation-to-real adaptation, cross-scene adaptation, and cross-camera adaptation, respectively.
Decentralized Finance (DeFi) has emerged as a contemporary competitive as well as complementary to traditional centralized finance systems. As of 23rd January 2024, per Defillama approximately USD 55 billion is the total value locked on the DeFi applications on all blockchains put together. A Byzantine Fault Tolerant (BFT) State Machine Replication (SMR) protocol, popularly known as the consensus protocol, is the central component of a blockchain. If forks are possible in a consensus protocol, they can be misused to carry out double spending attacks and can be catastrophic given high volumes of finance that are transacted on blockchains. Formal verification of the safety of consensus protocols is the golden standard for guaranteeing that forks are not possible. However, it is considered complex and challenging to do. This is reflected by the fact that not many complex consensus protocols are formally verified except for Tendermint and QBFT. We focus on Supra's Pipelined Moonshot consensus protocol. Similar to Tendermint's formal verification, we too model Pipelined Moonshot using IVy and formally prove that for all network sizes, as long as the number of Byzantine validators is less than one thirds, the protocol does not allow forks, thus proving that Pipelined Moonshot is safe and double spending cannot be done using forks. The IVy model and proof of safety is available on Github.
Modern Large Language Models (LLMs) are capable of following long and complex instructions that enable a diverse amount of user tasks. However, despite Information Retrieval (IR) models using LLMs as the backbone of their architectures, nearly all of them still only take queries as input, with no instructions. For the handful of recent models that do take instructions, it's unclear how they use them. We introduce our dataset FollowIR, which contains a rigorous instruction evaluation benchmark as well as a training set for helping IR models learn to better follow real-world instructions. FollowIR builds off the long history of the TREC conferences: as TREC provides human annotators with instructions (also known as narratives) to determine document relevance, so should IR models be able to understand and decide relevance based on these detailed instructions. Our evaluation benchmark starts with three deeply judged TREC collections and alters the annotator instructions, re-annotating relevant documents. Through this process, we can measure how well IR models follow instructions, through a new pairwise evaluation framework. Our results indicate that existing retrieval models fail to correctly use instructions, using them for basic keywords and struggling to understand long-form information. However, we show that it is possible for IR models to learn to follow complex instructions: our new FollowIR-7B model has significant improvements (over 13%) after fine-tuning on our training set.
Large Language Models (LLMs) have shown remarkable capabilities, but their reasoning abilities and underlying mechanisms remain poorly understood. We present a novel approach to enhance LLMs' reasoning through attention mechanism optimization, without additional training data. We identify inefficiencies in the attention distribution caused by non-semantic tokens and propose an algorithm to re-balance the skewed distribution, enabling the model to abstract more nuanced knowledge. Our experiments demonstrate significantly improved reasoning capabilities, particularly for non-STEM questions. We provide insights into the role of attention patterns in LLMs' reasoning and propose a method to enhance these abilities, paving the way for more powerful and versatile language models.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.