亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Although deep learning models have achieved unprecedented success, their vulnerabilities towards adversarial attacks have attracted increasing attention, especially when deployed in security-critical domains. To address the challenge, numerous defense strategies, including reactive and proactive ones, have been proposed for robustness improvement. From the perspective of image feature space, some of them cannot reach satisfying results due to the shift of features. Besides, features learned by models are not directly related to classification results. Different from them, We consider defense method essentially from model inside and investigated the neuron behaviors before and after attacks. We observed that attacks mislead the model by dramatically changing the neurons that contribute most and least to the correct label. Motivated by it, we introduce the concept of neuron influence and further divide neurons into front, middle and tail part. Based on it, we propose neuron-level inverse perturbation(NIP), the first neuron-level reactive defense method against adversarial attacks. By strengthening front neurons and weakening those in the tail part, NIP can eliminate nearly all adversarial perturbations while still maintaining high benign accuracy. Besides, it can cope with different sizes of perturbations via adaptivity, especially larger ones. Comprehensive experiments conducted on three datasets and six models show that NIP outperforms the state-of-the-art baselines against eleven adversarial attacks. We further provide interpretable proofs via neuron activation and visualization for better understanding.

相關內容

Adversarial regularization has been shown to improve the generalization performance of deep learning models in various natural language processing tasks. Existing works usually formulate the method as a zero-sum game, which is solved by alternating gradient descent/ascent algorithms. Such a formulation treats the adversarial and the defending players equally, which is undesirable because only the defending player contributes to the generalization performance. To address this issue, we propose Stackelberg Adversarial Regularization (SALT), which formulates adversarial regularization as a Stackelberg game. This formulation induces a competition between a leader and a follower, where the follower generates perturbations, and the leader trains the model subject to the perturbations. Different from conventional approaches, in SALT, the leader is in an advantageous position. When the leader moves, it recognizes the strategy of the follower and takes the anticipated follower's outcomes into consideration. Such a leader's advantage enables us to improve the model fitting to the unperturbed data. The leader's strategic information is captured by the Stackelberg gradient, which is obtained using an unrolling algorithm. Our experimental results on a set of machine translation and natural language understanding tasks show that SALT outperforms existing adversarial regularization baselines across all tasks. Our code is available at //github.com/SimiaoZuo/Stackelberg-Adv.

A growing body of work has shown that deep neural networks are susceptible to adversarial examples. These take the form of small perturbations applied to the model's input which lead to incorrect predictions. Unfortunately, most literature focuses on visually imperceivable perturbations to be applied to digital images that often are, by design, impossible to be deployed to physical targets. We present Adversarial Scratches: a novel L0 black-box attack, which takes the form of scratches in images, and which possesses much greater deployability than other state-of-the-art attacks. Adversarial Scratches leverage B\'ezier Curves to reduce the dimension of the search space and possibly constrain the attack to a specific location. We test Adversarial Scratches in several scenarios, including a publicly available API and images of traffic signs. Results show that, often, our attack achieves higher fooling rate than other deployable state-of-the-art methods, while requiring significantly fewer queries and modifying very few pixels.

Deep neural networks have become an integral part of our software infrastructure and are being deployed in many widely-used and safety-critical applications. However, their integration into many systems also brings with it the vulnerability to test time attacks in the form of Universal Adversarial Perturbations (UAPs). UAPs are a class of perturbations that when applied to any input causes model misclassification. Although there is an ongoing effort to defend models against these adversarial attacks, it is often difficult to reconcile the trade-offs in model accuracy and robustness to adversarial attacks. Jacobian regularization has been shown to improve the robustness of models against UAPs, whilst model ensembles have been widely adopted to improve both predictive performance and model robustness. In this work, we propose a novel approach, Jacobian Ensembles-a combination of Jacobian regularization and model ensembles to significantly increase the robustness against UAPs whilst maintaining or improving model accuracy. Our results show that Jacobian Ensembles achieves previously unseen levels of accuracy and robustness, greatly improving over previous methods that tend to skew towards only either accuracy or robustness.

Deepfakes utilise Artificial Intelligence (AI) techniques to create synthetic media where the likeness of one person is replaced with another. There are growing concerns that deepfakes can be maliciously used to create misleading and harmful digital contents. As deepfakes become more common, there is a dire need for deepfake detection technology to help spot deepfake media. Present deepfake detection models are able to achieve outstanding accuracy (>90%). However, most of them are limited to within-dataset scenario, where the same dataset is used for training and testing. Most models do not generalise well enough in cross-dataset scenario, where models are tested on unseen datasets from another source. Furthermore, state-of-the-art deepfake detection models rely on neural network-based classification models that are known to be vulnerable to adversarial attacks. Motivated by the need for a robust deepfake detection model, this study adapts metamorphic testing (MT) principles to help identify potential factors that could influence the robustness of the examined model, while overcoming the test oracle problem in this domain. Metamorphic testing is specifically chosen as the testing technique as it fits our demand to address learning-based system testing with probabilistic outcomes from largely black-box components, based on potentially large input domains. We performed our evaluations on MesoInception-4 and TwoStreamNet models, which are the state-of-the-art deepfake detection models. This study identified makeup application as an adversarial attack that could fool deepfake detectors. Our experimental results demonstrate that both the MesoInception-4 and TwoStreamNet models degrade in their performance by up to 30\% when the input data is perturbed with makeup.

This study explores how robots and generative approaches can be used to mount successful false-acceptance adversarial attacks on signature verification systems. Initially, a convolutional neural network topology and data augmentation strategy are explored and tuned, producing an 87.12% accurate model for the verification of 2,640 human signatures. Two robots are then tasked with forging 50 signatures, where 25 are used for the verification attack, and the remaining 25 are used for tuning of the model to defend against them. Adversarial attacks on the system show that there exists an information security risk; the Line-us robotic arm can fool the system 24% of the time and the iDraw 2.0 robot 32% of the time. A conditional GAN finds similar success, with around 30% forged signatures misclassified as genuine. Following fine-tune transfer learning of robotic and generative data, adversarial attacks are reduced below the model threshold by both robots and the GAN. It is observed that tuning the model reduces the risk of attack by robots to 8% and 12%, and that conditional generative adversarial attacks can be reduced to 4% when 25 images are presented and 5% when 1000 images are presented.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.

北京阿比特科技有限公司