亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, the advent of vision Transformer (ViT) has brought substantial advancements in 3D dataset benchmarks, particularly in 3D volumetric medical image segmentation (Vol-MedSeg). Concurrently, multi-layer perceptron (MLP) network has regained popularity among researchers due to their comparable results to ViT, albeit with the exclusion of the resource-intensive self-attention module. In this work, we propose a novel permutable hybrid network for Vol-MedSeg, named PHNet, which capitalizes on the strengths of both convolution neural networks (CNNs) and MLP. PHNet addresses the intrinsic isotropy problem of 3D volumetric data by employing a combination of 2D and 3D CNNs to extract local features. Besides, we propose an efficient multi-layer permute perceptron (MLPP) module that captures long-range dependence while preserving positional information. This is achieved through an axis decomposition operation that permutes the input tensor along different axes, thereby enabling the separate encoding of the positional information. Furthermore, MLPP tackles the resolution sensitivity issue of MLP in Vol-MedSeg with a token segmentation operation, which divides the feature into smaller tokens and processes them individually. Extensive experimental results validate that PHNet outperforms the state-of-the-art methods with lower computational costs on the widely-used yet challenging COVID-19-20 and Synapse benchmarks. The ablation study also demonstrates the effectiveness of PHNet in harnessing the strengths of both CNNs and MLP.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網絡會(hui)議。 Publisher:IFIP。 SIT:

Convolutional Neural Networks (CNN) offer state of the art performance in various computer vision tasks. Many of those tasks require different subtypes of affine invariances (scale, rotational, translational) to image transformations. Convolutional layers are translation equivariant by design, but in their basic form lack invariances. In this work we investigate how best to include rotational invariance in a CNN for image classification. Our experiments show that networks trained with data augmentation alone can classify rotated images nearly as well as in the normal unrotated case; this increase in representational power comes only at the cost of training time. We also compare data augmentation versus two modified CNN models for achieving rotational invariance or equivariance, Spatial Transformer Networks and Group Equivariant CNNs, finding no significant accuracy increase with these specialized methods. In the case of data augmented networks, we also analyze which layers help the network to encode the rotational invariance, which is important for understanding its limitations and how to best retrain a network with data augmentation to achieve invariance to rotation.

We describe a robotic learning system for autonomous exploration and navigation in diverse, open-world environments. At the core of our method is a learned latent variable model of distances and actions, along with a non-parametric topological memory of images. We use an information bottleneck to regularize the learned policy, giving us (i) a compact visual representation of goals, (ii) improved generalization capabilities, and (iii) a mechanism for sampling feasible goals for exploration. Trained on a large offline dataset of prior experience, the model acquires a representation of visual goals that is robust to task-irrelevant distractors. We demonstrate our method on a mobile ground robot in open-world exploration scenarios. Given an image of a goal that is up to 80 meters away, our method leverages its representation to explore and discover the goal in under 20 minutes, even amidst previously-unseen obstacles and weather conditions. Please check out the project website for videos of our experiments and information about the real-world dataset used at //sites.google.com/view/recon-robot.

In recent years, a number of models that learn the relations between vision and language from large datasets have been released. These models perform a variety of tasks, such as answering questions about images, retrieving sentences that best correspond to images, and finding regions in images that correspond to phrases. Although there are some examples, the connection between these pre-trained vision-language models and robotics is still weak. If they are directly connected to robot motions, they lose their versatility due to the embodiment of the robot and the difficulty of data collection, and become inapplicable to a wide range of bodies and situations. Therefore, in this study, we categorize and summarize the methods to utilize the pre-trained vision-language models flexibly and easily in a way that the robot can understand, without directly connecting them to robot motions. We discuss how to use these models for robot motion selection and motion planning without re-training the models. We consider five types of methods to extract information understandable for robots, and show the results of state recognition, object recognition, affordance recognition, relation recognition, and anomaly detection based on the combination of these five methods. We expect that this study will add flexibility and ease-of-use, as well as new applications, to the recognition behavior of existing robots.

The use of Deep Neural Network (DNN) models in risk-based decision-making has attracted extensive attention with broad applications in medical, finance, manufacturing, and quality control. To mitigate prediction-related risks in decision making, prediction confidence or uncertainty should be assessed alongside the overall performance of algorithms. Recent studies on Bayesian deep learning helps quantify prediction uncertainty arises from input noises and model parameters. However, the normality assumption of input noise in these models limits their applicability to problems involving categorical and discrete feature variables in tabular datasets. In this paper, we propose a mathematical framework to quantify prediction uncertainty for DNN models. The prediction uncertainty arises from errors in predictors that follow some known finite discrete distribution. We then conducted a case study using the framework to predict treatment outcome for tuberculosis patients during their course of treatment. The results demonstrate under a certain level of risk, we can identify risk-sensitive cases, which are prone to be misclassified due to error in predictors. Comparing to the Monte Carlo dropout method, our proposed framework is more aware of misclassification cases. Our proposed framework for uncertainty quantification in deep learning can support risk-based decision making in applications when discrete errors in predictors are present.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司