Humans excel at robust bipedal walking in complex natural environments. In each step, they adequately tune the interaction of biomechanical muscle dynamics and neuronal signals to be robust against uncertainties in ground conditions. However, it is still not fully understood how the nervous system resolves the musculoskeletal redundancy to solve the multi-objective control problem considering stability, robustness, and energy efficiency. In computer simulations, energy minimization has been shown to be a successful optimization target, reproducing natural walking with trajectory optimization or reflex-based control methods. However, these methods focus on particular motions at a time and the resulting controllers are limited when compensating for perturbations. In robotics, reinforcement learning~(RL) methods recently achieved highly stable (and efficient) locomotion on quadruped systems, but the generation of human-like walking with bipedal biomechanical models has required extensive use of expert data sets. This strong reliance on demonstrations often results in brittle policies and limits the application to new behaviors, especially considering the potential variety of movements for high-dimensional musculoskeletal models in 3D. Achieving natural locomotion with RL without sacrificing its incredible robustness might pave the way for a novel approach to studying human walking in complex natural environments. Videos: //sites.google.com/view/naturalwalkingrl
Open Information Extraction (OpenIE) is a fundamental yet challenging task in Natural Language Processing, which involves extracting all triples (subject, predicate, object) from a given sentence. While labeling-based methods have their merits, generation-based techniques offer unique advantages, such as the ability to generate tokens not present in the original sentence. However, these generation-based methods often require a significant amount of training data to learn the task form of OpenIE and substantial training time to overcome slow model convergence due to the order penalty. In this paper, we introduce a novel framework, OK-IE, that ingeniously transforms the task form of OpenIE into the pre-training task form of the T5 model, thereby reducing the need for extensive training data. Furthermore, we introduce an innovative concept of Anchor to control the sequence of model outputs, effectively eliminating the impact of order penalty on model convergence and significantly reducing training time. Experimental results indicate that, compared to previous SOTA methods, OK-IE requires only 1/100 of the training data (900 instances) and 1/120 of the training time (3 minutes) to achieve comparable results.
Scaling dense PCFGs to thousands of nonterminals via a low-rank parameterization of the rule probability tensor has been shown to be beneficial for unsupervised parsing. However, PCFGs scaled this way still perform poorly as a language model, and even underperform similarly-sized HMMs. This work introduces \emph{SimplePCFG}, a simple PCFG formalism with independent left and right productions. Despite imposing a stronger independence assumption than the low-rank approach, we find that this formalism scales more effectively both as a language model and as an unsupervised parser. As an unsupervised parser, our simple PCFG obtains an average F1 of 65.1 on the English PTB, and as a language model, it obtains a perplexity of 119.0, outperforming similarly-sized low-rank PCFGs. We further introduce \emph{FlashInside}, a hardware IO-aware implementation of the inside algorithm for efficiently scaling simple PCFGs.
We establish the first mathematically rigorous link between Bayesian, variational Bayesian, and ensemble methods. A key step towards this it to reformulate the non-convex optimisation problem typically encountered in deep learning as a convex optimisation in the space of probability measures. On a technical level, our contribution amounts to studying generalised variational inference through the lense of Wasserstein gradient flows. The result is a unified theory of various seemingly disconnected approaches that are commonly used for uncertainty quantification in deep learning -- including deep ensembles and (variational) Bayesian methods. This offers a fresh perspective on the reasons behind the success of deep ensembles over procedures based on parameterised variational inference, and allows the derivation of new ensembling schemes with convergence guarantees. We showcase this by proposing a family of interacting deep ensembles with direct parallels to the interactions of particle systems in thermodynamics, and use our theory to prove the convergence of these algorithms to a well-defined global minimiser on the space of probability measures.
We study a search and tracking (S&T) problem where a team of dynamic search agents must collaborate to track an adversarial, evasive agent. The heterogeneous search team may only have access to a limited number of past adversary trajectories within a large search space. This problem is challenging for both model-based searching and reinforcement learning (RL) methods since the adversary exhibits reactionary and deceptive evasive behaviors in a large space leading to sparse detections for the search agents. To address this challenge, we propose a novel Multi-Agent RL (MARL) framework that leverages the estimated adversary location from our learnable filtering model. We show that our MARL architecture can outperform all baselines and achieves a 46% increase in detection rate.
Recent work in the field of speech enhancement (SE) has involved the use of self-supervised speech representations (SSSRs) as feature transformations in loss functions. However, in prior work, very little attention has been paid to the relationship between the language of the audio used to train the self-supervised representation and that used to train the SE system. Enhancement models trained using a loss function which incorporates a self-supervised representation that shares exactly the language of the noisy data used to train the SE system show better performance than those which do not match exactly. This may lead to enhancement systems which are language specific and as such do not generalise well to unseen languages, unlike models trained using traditional spectrogram or time domain loss functions. In this work, SE models are trained and tested on a number of different languages, with self-supervised representations which themselves are trained using different language combinations and with differing network structures as loss function representations. These models are then tested across unseen languages and their performances are analysed. It is found that the training language of the self-supervised representation appears to have a minor effect on enhancement performance, the amount of training data of a particular language, however, greatly affects performance.
This work presents an algorithm for tracking the shape of multiple entangling Deformable Linear Objects (DLOs) from a sequence of RGB-D images. This algorithm runs in real-time and improves on previous single-DLO tracking approaches by enabling tracking of multiple objects. This is achieved using Global-Local Topology Preservation (GLTP). This work uses the geodesic distance in GLTP to define the distance between separate objects and the distance between different parts of the same object. Tracking multiple entangling DLOs is demonstrated experimentally. The source code is publicly released.
For humans, fast, efficient walking over flat ground represents the vast majority of locomotion that an individual experiences on a daily basis, and for an effective, real-world humanoid robot the same will likely be the case. In this work, we propose a locomotion controller for efficient walking over near-flat ground using a relatively simple, model-based controller that utilizes a novel combination of several interesting design features including an ALIP-based step adjustment strategy, stance leg length control as an alternative to center of mass height control, and rolling contact for heel-to-toe motion of the stance foot. We then present the results of this controller on our robot Nadia, both in simulation and on hardware. These results include validation of this controller's ability to perform fast, reliable forward walking at 0.75 m/s along with backwards walking, side-stepping, turning in place, and push recovery. We also present an efficiency comparison between the proposed control strategy and our baseline walking controller over three steady-state walking speeds. Lastly, we demonstrate some of the benefits of utilizing rolling contact in the stance foot, specifically the reduction of necessary positive and negative work throughout the stride.
In this work, we study rapid, step-wise improvements of the loss in transformers when being confronted with multi-step decision tasks. We found that transformers struggle to learn the intermediate tasks, whereas CNNs have no such issue on the tasks we studied. When transformers learn the intermediate task, they do this rapidly and unexpectedly after both training and validation loss saturated for hundreds of epochs. We call these rapid improvements Eureka-moments, since the transformer appears to suddenly learn a previously incomprehensible task. Similar leaps in performance have become known as Grokking. In contrast to Grokking, for Eureka-moments, both the validation and the training loss saturate before rapidly improving. We trace the problem back to the Softmax function in the self-attention block of transformers and show ways to alleviate the problem. These fixes improve training speed. The improved models reach 95% of the baseline model in just 20% of training steps while having a much higher likelihood to learn the intermediate task, lead to higher final accuracy and are more robust to hyper-parameters.
In the wake of Masked Image Modeling (MIM), a diverse range of plain, non-hierarchical Vision Transformer (ViT) models have been pre-trained with extensive datasets, offering new paradigms and significant potential for semantic segmentation. Current state-of-the-art systems incorporate numerous inductive biases and employ cumbersome decoders. Building upon the original motivations of plain ViTs, which are simplicity and generality, we explore high-performance `minimalist' systems to this end. Our primary purpose is to provide simple and efficient baselines for practical semantic segmentation with plain ViTs. Specifically, we first explore the feasibility and methodology for achieving high-performance semantic segmentation using the last feature map. As a result, we introduce the PlainSeg, a model comprising only three 3$\times$3 convolutions in addition to the transformer layers (either encoder or decoder). In this process, we offer insights into two underlying principles: (i) high-resolution features are crucial to high performance in spite of employing simple up-sampling techniques and (ii) the slim transformer decoder requires a much larger learning rate than the wide transformer decoder. On this basis, we further present the PlainSeg-Hier, which allows for the utilization of hierarchical features. Extensive experiments on four popular benchmarks demonstrate the high performance and efficiency of our methods. They can also serve as powerful tools for assessing the transfer ability of base models in semantic segmentation. Code is available at \url{//github.com/ydhongHIT/PlainSeg}.
Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.