We study \textit{rescaled gradient dynamical systems} in a Hilbert space $\mathcal{H}$, where the implicit discretization in a finite-dimensional Euclidean space leads to high-order methods for solving monotone equations (MEs). Our framework generalizes the celebrated dual extrapolation method~\citep{Nesterov-2007-Dual} from first order to high order via appeal to the regularization toolbox of optimization theory~\citep{Nesterov-2021-Implementable, Nesterov-2021-Inexact}. We establish the existence and uniqueness of a global solution and analyze the convergence properties of solution trajectories. We also present discrete-time counterparts of our high-order continuous-time methods, and we show that the $p^{th}$-order method achieves an ergodic rate of $O(k^{-(p+1)/2})$ in terms of a restricted merit function and a pointwise rate of $O(k^{-p/2})$ in terms of a residue function. Under regularity conditions, the restarted version of $p^{th}$-order methods achieves local convergence with the order $p \geq 2$.
The density variation of smectic A liquid crystals is modelled by a fourth-order PDE, which exhibits two complications over the biharmonic or other typical $H^2$-elliptic fourth-order problems. First, the equation involves a ``Hessian-squared'' (div-div-grad-grad) operator, rather than a biharmonic (div-grad-div-grad) operator. Secondly, while positive-definite, the equation has a ``wrong-sign'' shift, making it somewhat more akin to a Helmholtz operator, with lowest-energy modes arising from certain plane waves, than an elliptic one. In this paper, we analyze and compare three finite-element formulations for such PDEs, based on $H^2$-conforming elements, the $C^0$ interior penalty method, and a mixed finite-element formulation that explicitly introduces approximations to the gradient of the solution and a Lagrange multiplier. The conforming method is simple but is impractical to apply in three dimensions; the interior-penalty method works well in two and three dimensions but has lower-order convergence and (in preliminary experiments) seems difficult to precondition; the mixed method uses more degrees of freedom, but works well in both two and three dimensions, and is amenable to monolithic multigrid preconditioning. Numerical results verify the finite-element convergence for all discretizations, and illustrate the trade-offs between the three schemes.
The purpose of this article is to study the convergence of a low order finite element approximation for a natural convection problem. We prove that the discretization based on P1 polynomials for every variable (velocity, pressure and temperature) is well-posed if used with a penalty term in the divergence equation, to compensate the loss of an inf-sup condition. With mild assumptions on the pressure regularity, we recover convergence for the Navier-Stokes-Boussinesq system, provided the penalty term is chosen in accordance with the mesh size. We express conditions to obtain optimal order of convergence. We illustrate theoretical convergence results with extensive examples. The computational cost that can be saved by this approach is also assessed.
The monotone minimal perfect hash function (MMPHF) problem is the following indexing problem. Given a set $S= \{s_1,\ldots,s_n\}$ of $n$ distinct keys from a universe $U$ of size $u$, create a data structure $DS$ that answers the following query: \[ RankOp(q) = \text{rank of } q \text{ in } S \text{ for all } q\in S ~\text{ and arbitrary answer otherwise.} \] Solutions to the MMPHF problem are in widespread use in both theory and practice. The best upper bound known for the problem encodes $DS$ in $O(n\log\log\log u)$ bits and performs queries in $O(\log u)$ time. It has been an open problem to either improve the space upper bound or to show that this somewhat odd looking bound is tight. In this paper, we show the latter: specifically that any data structure (deterministic or randomized) for monotone minimal perfect hashing of any collection of $n$ elements from a universe of size $u$ requires $\Omega(n \cdot \log\log\log{u})$ expected bits to answer every query correctly. We achieve our lower bound by defining a graph $\mathbf{G}$ where the nodes are the possible ${u \choose n}$ inputs and where two nodes are adjacent if they cannot share the same $DS$. The size of $DS$ is then lower bounded by the log of the chromatic number of $\mathbf{G}$. Finally, we show that the fractional chromatic number (and hence the chromatic number) of $\mathbf{G}$ is lower bounded by $2^{\Omega(n \log\log\log u)}$.
This paper presents some results on the maximum likelihood (ML) estimation from incomplete data. Finite sample properties of conditional observed information matrices are established. They possess positive definiteness and the same Loewner partial ordering as the expected information matrices do. An explicit form of the observed Fisher information (OFI) is derived for the calculation of standard errors of the ML estimates. It simplifies Louis (1982) general formula for the OFI matrix. To prevent from getting an incorrect inverse of the OFI matrix, which may be attributed by the lack of sparsity and large size of the matrix, a monotone convergent recursive equation for the inverse matrix is developed which in turn generalizes the algorithm of Hero and Fessler (1994) for the Cram\'er-Rao lower bound. To improve the estimation, in particular when applying repeated sampling to incomplete data, a robust M-estimator is introduced. A closed form sandwich estimator of covariance matrix is proposed to provide the standard errors of the M-estimator. By the resulting loss of information presented in finite-sample incomplete data, the sandwich estimator produces smaller standard errors for the M-estimator than the ML estimates. In the case of complete information or absence of re-sampling, the M-estimator coincides with the ML estimates. Application to parameter estimation of a regime switching conditional Markov jump process is discussed to verify the results. The simulation study confirms the accuracy and asymptotic properties of the M-estimator.
We study \textit{rescaled gradient dynamical systems} in a Hilbert space $\mathcal{H}$, where implicit discretization in a finite-dimensional Euclidean space leads to high-order methods for solving monotone equations (MEs). Our framework can be interpreted as a natural generalization of celebrated dual extrapolation method~\citep{Nesterov-2007-Dual} from first order to high order via appeal to the regularization toolbox of optimization theory~\citep{Nesterov-2021-Implementable, Nesterov-2021-Inexact}. More specifically, we establish the existence and uniqueness of a global solution and analyze the convergence properties of solution trajectories. We also present discrete-time counterparts of our high-order continuous-time methods, and we show that the $p^{th}$-order method achieves an ergodic rate of $O(k^{-(p+1)/2})$ in terms of a restricted merit function and a pointwise rate of $O(k^{-p/2})$ in terms of a residue function. Under regularity conditions, the restarted version of $p^{th}$-order methods achieves local convergence with the order $p \geq 2$. Notably, our methods are \textit{optimal} since they have matched the lower bound established for solving the monotone equation problems under a standard linear span assumption~\citep{Lin-2022-Perseus}.
For capillary driven flow the interface curvature is essential in the modelling of surface tension via the imposition of the Young--Laplace jump condition. We show that traditional geometric volume of fluid (VOF) methods, that are based on a piecewise linear approximation of the interface, do not lead to an interface curvature which is convergent under mesh refinement in time-dependent problems. Instead, we propose to use a piecewise parabolic approximation of the interface, resulting in a class of piecewise parabolic interface calculation (PPIC) methods. In particular, we introduce the parabolic LVIRA and MOF methods, PLVIRA and PMOF, respectively. We show that a Lagrangian remapping method is sufficiently accurate for the advection of such a parabolic interface. It is numerically demonstrated that the newly proposed PPIC methods result in an increase of reconstruction accuracy by one order, convergence of the interface curvature in time-dependent advection problems and Weber number independent convergence of a droplet translation problem, where the advection method is coupled to a two-phase Navier--Stokes solver. The PLVIRA method is applied to the simulation of a 2D rising bubble, which shows good agreement to a reference solution.
We present a non-asymptotic lower bound on the eigenspectrum of the design matrix generated by any linear bandit algorithm with sub-linear regret when the action set has well-behaved curvature. Specifically, we show that the minimum eigenvalue of the expected design matrix grows as $\Omega(\sqrt{n})$ whenever the expected cumulative regret of the algorithm is $O(\sqrt{n})$, where $n$ is the learning horizon, and the action-space has a constant Hessian around the optimal arm. This shows that such action-spaces force a polynomial lower bound rather than a logarithmic lower bound, as shown by \cite{lattimore2017end}, in discrete (i.e., well-separated) action spaces. Furthermore, while the previous result is shown to hold only in the asymptotic regime (as $n \to \infty$), our result for these ``locally rich" action spaces is any-time. Additionally, under a mild technical assumption, we obtain a similar lower bound on the minimum eigen value holding with high probability. We apply our result to two practical scenarios -- \emph{model selection} and \emph{clustering} in linear bandits. For model selection, we show that an epoch-based linear bandit algorithm adapts to the true model complexity at a rate exponential in the number of epochs, by virtue of our novel spectral bound. For clustering, we consider a multi agent framework where we show, by leveraging the spectral result, that no forced exploration is necessary -- the agents can run a linear bandit algorithm and estimate their underlying parameters at once, and hence incur a low regret.
We study policy gradient (PG) for reinforcement learning in continuous time and space under the regularized exploratory formulation developed by Wang et al. (2020). We represent the gradient of the value function with respect to a given parameterized stochastic policy as the expected integration of an auxiliary running reward function that can be evaluated using samples and the current value function. This effectively turns PG into a policy evaluation (PE) problem, enabling us to apply the martingale approach recently developed by Jia and Zhou (2021) for PE to solve our PG problem. Based on this analysis, we propose two types of the actor-critic algorithms for RL, where we learn and update value functions and policies simultaneously and alternatingly. The first type is based directly on the aforementioned representation which involves future trajectories and hence is offline. The second type, designed for online learning, employs the first-order condition of the policy gradient and turns it into martingale orthogonality conditions. These conditions are then incorporated using stochastic approximation when updating policies. Finally, we demonstrate the algorithms by simulations in two concrete examples.
Optimal execution is a sequential decision-making problem for cost-saving in algorithmic trading. Studies have found that reinforcement learning (RL) can help decide the order-splitting sizes. However, a problem remains unsolved: how to place limit orders at appropriate limit prices? The key challenge lies in the "continuous-discrete duality" of the action space. On the one hand, the continuous action space using percentage changes in prices is preferred for generalization. On the other hand, the trader eventually needs to choose limit prices discretely due to the existence of the tick size, which requires specialization for every single stock with different characteristics (e.g., the liquidity and the price range). So we need continuous control for generalization and discrete control for specialization. To this end, we propose a hybrid RL method to combine the advantages of both of them. We first use a continuous control agent to scope an action subset, then deploy a fine-grained agent to choose a specific limit price. Extensive experiments show that our method has higher sample efficiency and better training stability than existing RL algorithms and significantly outperforms previous learning-based methods for order execution.
We investigate the fine-grained and the parameterized complexity of several generalizations of binary constraint satisfaction problems (BINARY-CSPs), that subsume variants of graph colouring problems. Our starting point is the observation that several algorithmic approaches that resulted in complexity upper bounds for these problems, share a common structure. We thus explore an algebraic approach relying on semirings that unifies different generalizations of BINARY-CSPs (such as the counting, the list, and the weighted versions), and that facilitates a general algorithmic approach to efficiently solving them. The latter is inspired by the (component) twin-width parameter introduced by Bonnet et al., which we generalize via edge-labelled graphs in order to formulate it to arbitrary binary constraints. We consider input instances with bounded component twin-width, as well as constraint templates of bounded component twin-width, and obtain an FPT algorithm as well as an improved, exponential-time algorithm, for broad classes of binary constraints. We illustrate the advantages of this framework by instantiating our general algorithmic approach on several classes of problems (e.g., the $H$-coloring problem and its variants), and showing that it improves the best complexity upper bounds in the literature for several well-known problems.