Double descent presents a counter-intuitive aspect within the machine learning domain, and researchers have observed its manifestation in various models and tasks. While some theoretical explanations have been proposed for this phenomenon in specific contexts, an accepted theory for its occurring mechanism in deep learning remains yet to be established. In this study, we revisited the phenomenon of double descent and discussed the conditions of its occurrence. This paper introduces the concept of class-activation matrices and a methodology for estimating the effective complexity of functions, on which we unveil that over-parameterized models exhibit more distinct and simpler class patterns in hidden activations compared to under-parameterized ones. We further looked into the interpolation of noisy labelled data among clean representations and demonstrated overfitting w.r.t. expressive capacity. By comprehensively analysing hypotheses and presenting corresponding empirical evidence that either validates or contradicts these hypotheses, we aim to provide fresh insights into the phenomenon of double descent and benign over-parameterization and facilitate future explorations. By comprehensively studying different hypotheses and the corresponding empirical evidence either supports or challenges these hypotheses, our goal is to offer new insights into the phenomena of double descent and benign over-parameterization, thereby enabling further explorations in the field. The source code is available at //github.com/Yufei-Gu-451/sparse-generalization.git.
We study collaborative learning systems in which the participants are competitors who will defect from the system if they lose revenue by collaborating. As such, we frame the system as a duopoly of competitive firms who are each engaged in training machine-learning models and selling their predictions to a market of consumers. We first examine a fully collaborative scheme in which both firms share their models with each other and show that this leads to a market collapse with the revenues of both firms going to zero. We next show that one-sided collaboration in which only the firm with the lower-quality model shares improves the revenue of both firms. Finally, we propose a more equitable, *defection-free* scheme in which both firms share with each other while losing no revenue, and we show that our algorithm converges to the Nash bargaining solution.
Fair supervised learning algorithms assigning labels with little dependence on a sensitive attribute have attracted great attention in the machine learning community. While the demographic parity (DP) notion has been frequently used to measure a model's fairness in training fair classifiers, several studies in the literature suggest potential impacts of enforcing DP in fair learning algorithms. In this work, we analytically study the effect of standard DP-based regularization methods on the conditional distribution of the predicted label given the sensitive attribute. Our analysis shows that an imbalanced training dataset with a non-uniform distribution of the sensitive attribute could lead to a classification rule biased toward the sensitive attribute outcome holding the majority of training data. To control such inductive biases in DP-based fair learning, we propose a sensitive attribute-based distributionally robust optimization (SA-DRO) method improving robustness against the marginal distribution of the sensitive attribute. Finally, we present several numerical results on the application of DP-based learning methods to standard centralized and distributed learning problems. The empirical findings support our theoretical results on the inductive biases in DP-based fair learning algorithms and the debiasing effects of the proposed SA-DRO method.
We propose a unifying framework for smoothed analysis of combinatorial local optimization problems, and show how a diverse selection of problems within the complexity class PLS can be cast within this model. This abstraction allows us to identify key structural properties, and corresponding parameters, that determine the smoothed running time of local search dynamics. We formalize this via a black-box tool that provides concrete bounds on the expected maximum number of steps needed until local search reaches an exact local optimum. This bound is particularly strong, in the sense that it holds for any starting feasible solution, any choice of pivoting rule, and does not rely on the choice of specific noise distributions that are applied on the input, but it is parameterized by just a global upper bound $\phi$ on the probability density. The power of this tool can be demonstrated by instantiating it for various PLS-hard problems of interest to derive efficient smoothed running times (as a function of $\phi$ and the input size). Most notably, we focus on the important local optimization problem of finding pure Nash equilibria in Congestion Games, that has not been studied before from a smoothed analysis perspective. Specifically, we propose novel smoothed analysis models for general and Network Congestion Games, under various representations, including explicit, step-function, and polynomial resource latencies. We study PLS-hard instances of these problems and show that their standard local search algorithms run in polynomial smoothed time. Finally, we present further applications of our framework to a wide range of additional combinatorial problems, including local Max-Cut in weighted graphs, the Travelling Salesman problem (TSP) under the $k$-opt local heuristic, and finding pure equilibria in Network Coordination Games.
Data similarity assumptions have traditionally been relied upon to understand the convergence behaviors of federated learning methods. Unfortunately, this approach often demands fine-tuning step sizes based on the level of data similarity. When data similarity is low, these small step sizes result in an unacceptably slow convergence speed for federated methods. In this paper, we present a novel and unified framework for analyzing the convergence of federated learning algorithms without the need for data similarity conditions. Our analysis centers on an inequality that captures the influence of step sizes on algorithmic convergence performance. By applying our theorems to well-known federated algorithms, we derive precise expressions for three widely used step size schedules: fixed, diminishing, and step-decay step sizes, which are independent of data similarity conditions. Finally, we conduct comprehensive evaluations of the performance of these federated learning algorithms, employing the proposed step size strategies to train deep neural network models on benchmark datasets under varying data similarity conditions. Our findings demonstrate significant improvements in convergence speed and overall performance, marking a substantial advancement in federated learning research.
With the rapid development of Large Language Models (LLMs), a large number of machine learning models have been developed to assist programming tasks including the generation of program code from natural language input. However, how to evaluate such LLMs for this task is still an open problem despite of the great amount of research efforts that have been made and reported to evaluate and compare them. This paper provides a critical review of the existing work on the testing and evaluation of these tools with a focus on two key aspects: the benchmarks and the metrics used in the evaluations. Based on the review, further research directions are discussed.
In the scenario-based evaluation of machine learning models, a key problem is how to construct test datasets that represent various scenarios. The methodology proposed in this paper is to construct a benchmark and attach metadata to each test case. Then a test system can be constructed with test morphisms that filter the test cases based on metadata to form a dataset. The paper demonstrates this methodology with large language models for code generation. A benchmark called ScenEval is constructed from problems in textbooks, an online tutorial website and Stack Overflow. Filtering by scenario is demonstrated and the test sets are used to evaluate ChatGPT for Java code generation. Our experiments found that the performance of ChatGPT decreases with the complexity of the coding task. It is weakest for advanced topics like multi-threading, data structure algorithms and recursive methods. The Java code generated by ChatGPT tends to be much shorter than reference solution in terms of number of lines, while it is more likely to be more complex in both cyclomatic and cognitive complexity metrics, if the generated code is correct. However, the generated code is more likely to be less complex than the reference solution if the code is incorrect.
In the field of crowd counting research, many recent deep learning based methods have demonstrated robust capabilities for accurately estimating crowd sizes. However, the enhancement in their performance often arises from an increase in the complexity of the model structure. This paper discusses how to construct high-performance crowd counting models using only simple structures. We proposes the Fuss-Free Network (FFNet) that is characterized by its simple and efficieny structure, consisting of only a backbone network and a multi-scale feature fusion structure. The multi-scale feature fusion structure is a simple structure consisting of three branches, each only equipped with a focus transition module, and combines the features from these branches through the concatenation operation. Our proposed crowd counting model is trained and evaluated on four widely used public datasets, and it achieves accuracy that is comparable to that of existing complex models. Furthermore, we conduct a comprehensive evaluation by replacing the existing backbones of various models such as FFNet and CCTrans with different networks, including MobileNet-v3, ConvNeXt-Tiny, and Swin-Transformer-Small. The experimental results further indicate that excellent crowd counting performance can be achieved with the simplied structure proposed by us.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible. In this survey, we describe the meta-RL problem setting in detail as well as its major variations. We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, we then survey meta-RL algorithms and applications. We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.