亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Finding a suitable density function is essential for density-based clustering algorithms such as DBSCAN and DPC. A naive density corresponding to the indicator function of a unit $d$-dimensional Euclidean ball is commonly used in these algorithms. Such density suffers from capturing local features in complex datasets. To tackle this issue, we propose a new kernel diffusion density function, which is adaptive to data of varying local distributional characteristics and smoothness. Furthermore, we develop a surrogate that can be efficiently computed in linear time and space and prove that it is asymptotically equivalent to the kernel diffusion density function. Extensive empirical experiments on benchmark and large-scale face image datasets show that the proposed approach not only achieves a significant improvement over classic density-based clustering algorithms but also outperforms the state-of-the-art face clustering methods by a large margin.

相關內容

We provide explicit bounds on the number of sample points required to estimate tangent spaces and intrinsic dimensions of (smooth, compact) Euclidean submanifolds via local principal component analysis. Our approach directly estimates covariance matrices locally, which simultaneously allows estimating both the tangent spaces and the intrinsic dimension of a manifold. The key arguments involve a matrix concentration inequality, a Wasserstein bound for flattening a manifold, and a Lipschitz relation for the covariance matrix with respect to the Wasserstein distance.

Collaborative filtering (CF), as a fundamental approach for recommender systems, is usually built on the latent factor model with learnable parameters to predict users' preferences towards items. However, designing a proper CF model for a given data is not easy, since the properties of datasets are highly diverse. In this paper, motivated by the recent advances in automated machine learning (AutoML), we propose to design a data-specific CF model by AutoML techniques. The key here is a new framework that unifies state-of-the-art (SOTA) CF methods and splits them into disjoint stages of input encoding, embedding function, interaction function, and prediction function. We further develop an easy-to-use, robust, and efficient search strategy, which utilizes random search and a performance predictor for efficient searching within the above framework. In this way, we can combinatorially generalize data-specific CF models, which have not been visited in the literature, from SOTA ones. Extensive experiments on five real-world datasets demonstrate that our method can consistently outperform SOTA ones for various CF tasks. Further experiments verify the rationality of the proposed framework and the efficiency of the search strategy. The searched CF models can also provide insights for exploring more effective methods in the future

In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

Graph convolution is the core of most Graph Neural Networks (GNNs) and usually approximated by message passing between direct (one-hop) neighbors. In this work, we remove the restriction of using only the direct neighbors by introducing a powerful, yet spatially localized graph convolution: Graph diffusion convolution (GDC). GDC leverages generalized graph diffusion, examples of which are the heat kernel and personalized PageRank. It alleviates the problem of noisy and often arbitrarily defined edges in real graphs. We show that GDC is closely related to spectral-based models and thus combines the strengths of both spatial (message passing) and spectral methods. We demonstrate that replacing message passing with graph diffusion convolution consistently leads to significant performance improvements across a wide range of models on both supervised and unsupervised tasks and a variety of datasets. Furthermore, GDC is not limited to GNNs but can trivially be combined with any graph-based model or algorithm (e.g. spectral clustering) without requiring any changes to the latter or affecting its computational complexity. Our implementation is available online.

Clustering is one of the most fundamental and wide-spread techniques in exploratory data analysis. Yet, the basic approach to clustering has not really changed: a practitioner hand-picks a task-specific clustering loss to optimize and fit the given data to reveal the underlying cluster structure. Some types of losses---such as k-means, or its non-linear version: kernelized k-means (centroid based), and DBSCAN (density based)---are popular choices due to their good empirical performance on a range of applications. Although every so often the clustering output using these standard losses fails to reveal the underlying structure, and the practitioner has to custom-design their own variation. In this work we take an intrinsically different approach to clustering: rather than fitting a dataset to a specific clustering loss, we train a recurrent model that learns how to cluster. The model uses as training pairs examples of datasets (as input) and its corresponding cluster identities (as output). By providing multiple types of training datasets as inputs, our model has the ability to generalize well on unseen datasets (new clustering tasks). Our experiments reveal that by training on simple synthetically generated datasets or on existing real datasets, we can achieve better clustering performance on unseen real-world datasets when compared with standard benchmark clustering techniques. Our meta clustering model works well even for small datasets where the usual deep learning models tend to perform worse.

In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.

We present a new clustering method in the form of a single clustering equation that is able to directly discover groupings in the data. The main proposition is that the first neighbor of each sample is all one needs to discover large chains and finding the groups in the data. In contrast to most existing clustering algorithms our method does not require any hyper-parameters, distance thresholds and/or the need to specify the number of clusters. The proposed algorithm belongs to the family of hierarchical agglomerative methods. The technique has a very low computational overhead, is easily scalable and applicable to large practical problems. Evaluation on well known datasets from different domains ranging between 1077 and 8.1 million samples shows substantial performance gains when compared to the existing clustering techniques.

Tensor factorization has become an increasingly popular approach to knowledge graph completion(KGC), which is the task of automatically predicting missing facts in a knowledge graph. However, even with a simple model like CANDECOMP/PARAFAC(CP) tensor decomposition, KGC on existing knowledge graphs is impractical in resource-limited environments, as a large amount of memory is required to store parameters represented as 32-bit or 64-bit floating point numbers. This limitation is expected to become more stringent as existing knowledge graphs, which are already huge, keep steadily growing in scale. To reduce the memory requirement, we present a method for binarizing the parameters of the CP tensor decomposition by introducing a quantization function to the optimization problem. This method replaces floating point-valued parameters with binary ones after training, which drastically reduces the model size at run time. We investigate the trade-off between the quality and size of tensor factorization models for several KGC benchmark datasets. In our experiments, the proposed method successfully reduced the model size by more than an order of magnitude while maintaining the task performance. Moreover, a fast score computation technique can be developed with bitwise operations.

Network embedding has attracted considerable research attention recently. However, the existing methods are incapable of handling billion-scale networks, because they are computationally expensive and, at the same time, difficult to be accelerated by distributed computing schemes. To address these problems, we propose RandNE, a novel and simple billion-scale network embedding method. Specifically, we propose a Gaussian random projection approach to map the network into a low-dimensional embedding space while preserving the high-order proximities between nodes. To reduce the time complexity, we design an iterative projection procedure to avoid the explicit calculation of the high-order proximities. Theoretical analysis shows that our method is extremely efficient, and friendly to distributed computing schemes without any communication cost in the calculation. We demonstrate the efficacy of RandNE over state-of-the-art methods in network reconstruction and link prediction tasks on multiple datasets with different scales, ranging from thousands to billions of nodes and edges.

北京阿比特科技有限公司