亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The digitization of manufacturing processes enables promising applications for machine learning-assisted quality assurance. A widely used manufacturing process that can strongly benefit from data-driven solutions is gas metal arc welding (GMAW). The welding process is characterized by complex cause-effect relationships between material properties, process conditions and weld quality. In non-laboratory environments with frequently changing process parameters, accurate determination of weld quality by destructive testing is economically unfeasible. Deep learning offers the potential to identify the relationships in available process data and predict the weld quality from process observations. In this paper, we present a concept for a deep learning based predictive quality system in GMAW. At its core, the concept involves a pipeline consisting of four major phases: collection and management of multi-sensor data (e.g. current and voltage), real-time processing and feature engineering of the time series data by means of autoencoders, training and deployment of suitable recurrent deep learning models for quality predictions, and model evolutions under changing process conditions using continual learning. The concept provides the foundation for future research activities in which we will realize an online predictive quality system for running production.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Deep learning based intrusion detection systems (DL-based IDS) have emerged as one of the best choices for providing security solutions against various network intrusion attacks. However, due to the emergence and development of adversarial deep learning technologies, it becomes challenging for the adoption of DL models into IDS. In this paper, we propose a novel IDS architecture that can enhance the robustness of IDS against adversarial attacks by combining conventional machine learning (ML) models and Deep Learning models. The proposed DLL-IDS consists of three components: DL-based IDS, adversarial example (AE) detector, and ML-based IDS. We first develop a novel AE detector based on the local intrinsic dimensionality (LID). Then, we exploit the low attack transferability between DL models and ML models to find a robust ML model that can assist us in determining the maliciousness of AEs. If the input traffic is detected as an AE, the ML-based IDS will predict the maliciousness of input traffic, otherwise the DL-based IDS will work for the prediction. The fusion mechanism can leverage the high prediction accuracy of DL models and low attack transferability between DL models and ML models to improve the robustness of the whole system. In our experiments, we observe a significant improvement in the prediction performance of the IDS when subjected to adversarial attack, achieving high accuracy with low resource consumption.

The incorporation of advanced sensors and machine learning techniques has enabled modern manufacturing enterprises to perform data-driven in-situ quality monitoring based on the sensor data collected in manufacturing processes. However, one critical challenge is that newly presented defect category may manifest as the manufacturing process continues, resulting in monitoring performance deterioration of previously trained machine learning models. Hence, there is an increasing need for empowering machine learning model to learn continually. Among all continual learning methods, memory-based continual learning has the best performance but faces the constraints of data storage capacity. To address this issue, this paper develops a novel pseudo replay-based continual learning by integrating class incremental learning and oversampling-based data generation. Without storing all the data, the developed framework could generate high-quality data representing previous classes to train machine learning model incrementally when new category anomaly occurs. In addition, it could even enhance the monitoring performance since it also effectively improves the data quality. The effectiveness of the proposed framework is validated in an additive manufacturing process, which leverages supervised classification problem for anomaly detection. The experimental results show that the developed method is very promising in detecting novel anomaly while maintaining a good performance on the previous task and brings up more flexibility in model architecture.

This paper studies the fundamental learning problem of the energy-based model (EBM). Learning the EBM can be achieved using the maximum likelihood estimation (MLE), which typically involves the Markov Chain Monte Carlo (MCMC) sampling, such as the Langevin dynamics. However, the noise-initialized Langevin dynamics can be challenging in practice and hard to mix. This motivates the exploration of joint training with the generator model where the generator model serves as a complementary model to bypass MCMC sampling. However, such a method can be less accurate than the MCMC and result in biased EBM learning. While the generator can also serve as an initializer model for better MCMC sampling, its learning can be biased since it only matches the EBM and has no access to empirical training examples. Such biased generator learning may limit the potential of learning the EBM. To address this issue, we present a joint learning framework that interweaves the maximum likelihood learning algorithm for both the EBM and the complementary generator model. In particular, the generator model is learned by MLE to match both the EBM and the empirical data distribution, making it a more informative initializer for MCMC sampling of EBM. Learning generator with observed examples typically requires inference of the generator posterior. To ensure accurate and efficient inference, we adopt the MCMC posterior sampling and introduce a complementary inference model to initialize such latent MCMC sampling. We show that three separate models can be seamlessly integrated into our joint framework through two (dual-) MCMC teaching, enabling effective and efficient EBM learning.

Deep reinforcement learning offers notable benefits in addressing combinatorial problems over traditional solvers, reducing the reliance on domain-specific knowledge and expert solutions, and improving computational efficiency. Despite the recent surge in interest in neural combinatorial optimization, practitioners often do not have access to a standardized code base. Moreover, different algorithms are frequently based on fragmentized implementations that hinder reproducibility and fair comparison. To address these challenges, we introduce RL4CO, a unified Reinforcement Learning (RL) for Combinatorial Optimization (CO) library. We employ state-of-the-art software and best practices in implementation, such as modularity and configuration management, to be flexible, easily modifiable, and extensible by researchers. Thanks to our unified codebase, we benchmark baseline RL solvers with different evaluation schemes on zero-shot performance, generalization, and adaptability on diverse tasks. Notably, we find that some recent methods may fall behind their predecessors depending on the evaluation settings. We hope RL4CO will encourage the exploration of novel solutions to complex real-world tasks, allowing the community to compare with existing methods through a unified framework that decouples the science from software engineering. We open-source our library at //github.com/ai4co/rl4co.

ChipNeMo aims to explore the applications of large language models (LLMs) for industrial chip design. Instead of directly deploying off-the-shelf commercial or open-source LLMs, we instead adopt the following domain adaptation techniques: custom tokenizers, domain-adaptive continued pretraining, supervised fine-tuning (SFT) with domain-specific instructions, and domain-adapted retrieval models. We evaluate these methods on three selected LLM applications for chip design: an engineering assistant chatbot, EDA script generation, and bug summarization and analysis. Our results show that these domain adaptation techniques enable significant LLM performance improvements over general-purpose base models across the three evaluated applications, enabling up to 5x model size reduction with similar or better performance on a range of design tasks. Our findings also indicate that there's still room for improvement between our current results and ideal outcomes. We believe that further investigation of domain-adapted LLM approaches will help close this gap in the future.

We propose and demonstrate a compositional framework for training and verifying reinforcement learning (RL) systems within a multifidelity sim-to-real pipeline, in order to deploy reliable and adaptable RL policies on physical hardware. By decomposing complex robotic tasks into component subtasks and defining mathematical interfaces between them, the framework allows for the independent training and testing of the corresponding subtask policies, while simultaneously providing guarantees on the overall behavior that results from their composition. By verifying the performance of these subtask policies using a multifidelity simulation pipeline, the framework not only allows for efficient RL training, but also for a refinement of the subtasks and their interfaces in response to challenges arising from discrepancies between simulation and reality. In an experimental case study we apply the framework to train and deploy a compositional RL system that successfully pilots a Warthog unmanned ground robot.

Accurate epidemic forecasting is a critical task in controlling disease transmission. Many deep learning-based models focus only on static or dynamic graphs when constructing spatial information, ignoring their relationship. Additionally, these models often rely on recurrent structures, which can lead to error accumulation and computational time consumption. To address the aforementioned problems, we propose a novel model called Backbone-based Dynamic Graph Spatio-Temporal Network (BDGSTN). Intuitively, the continuous and smooth changes in graph structure, make adjacent graph structures share a basic pattern. To capture this property, we use adaptive methods to generate static backbone graphs containing the primary information and temporal models to generate dynamic temporal graphs of epidemic data, fusing them to generate a backbone-based dynamic graph. To overcome potential limitations associated with recurrent structures, we introduce a linear model DLinear to handle temporal dependencies and combine it with dynamic graph convolution for epidemic forecasting. Extensive experiments on two datasets demonstrate that BDGSTN outperforms baseline models and ablation comparison further verifies the effectiveness of model components. Furthermore, we analyze and measure the significance of backbone and temporal graphs by using information metrics from different aspects. Finally, we compare model parameter volume and training time to confirm the superior complexity and efficiency of BDGSTN.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司