亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce the problem of deceptive information retrieval (DIR), in which a user wishes to download a required file out of multiple independent files stored in a system of databases while \emph{deceiving} the databases by making the databases' predictions on the user-required file index incorrect with high probability. Conceptually, DIR is an extension of private information retrieval (PIR). In PIR, a user downloads a required file without revealing its index to any of the databases. The metric of deception is defined as the probability of error of databases' prediction on the user-required file, minus the corresponding probability of error in PIR. The problem is defined on time-sensitive data that keeps updating from time to time. In the proposed scheme, the user deceives the databases by sending \emph{real} queries to download the required file at the time of the requirement and \emph{dummy} queries at multiple distinct future time instances to manipulate the probabilities of sending each query for each file requirement, using which the databases' make the predictions on the user-required file index. The proposed DIR scheme is based on a capacity achieving probabilistic PIR scheme, and achieves rates lower than the PIR capacity due to the additional downloads made to deceive the databases. When the required level of deception is zero, the proposed scheme achieves the PIR capacity.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 輸入層 · 控制器 · INFORMS · 模型復雜度 ·
2023 年 8 月 31 日

We seek to give users precise control over diffusion-based image generation by modeling complex scenes as sequences of layers, which define the desired spatial arrangement and visual attributes of objects in the scene. Collage Diffusion harmonizes the input layers to make objects fit together -- the key challenge involves minimizing changes in the positions and key visual attributes of the input layers while allowing other attributes to change in the harmonization process. We ensure that objects are generated in the correct locations by modifying text-image cross-attention with the layers' alpha masks. We preserve key visual attributes of input layers by learning specialized text representations per layer and by extending ControlNet to operate on layers. Layer input allows users to control the extent of image harmonization on a per-object basis, and users can even iteratively edit individual objects in generated images while keeping other objects fixed. By leveraging the rich information present in layer input, Collage Diffusion generates globally harmonized images that maintain desired object characteristics better than prior approaches.

The software bill of materials (SBOM) concept aims to include more information about a software build such as copyrights, dependencies and security references. But SBOM lacks visibility into the process for building a package. Efforts such as Supply-chain Levels for Software Artifacts (SLSA) try to remedy this by focusing on the quality of the build process. But they lack quantitative assessment of that quality. They are purely qualitative. A new form of assurance case and new technique for structuring it, called process reduction, are presented. An assurance case for a toolchain is quantitative and when structured as a process reduction can measure the strength of the toolchain via the strength of the reduction. An example is given for a simple toolchain.

Understanding the behaviour of a system's API can be hard. Giving users access to relevant examples of how an API behaves has been shown to make this easier for them. In addition, such examples can be used to verify expected behaviour or identify unwanted behaviours. Methods for automatically generating examples have existed for a long time. However, state-of-the-art methods rely on either white-box information, such as source code, or on formal specifications of the system behaviour. But what if you do not have access to either? e.g., when interacting with a third-party API. In this paper, we present an approach to automatically generate relevant examples of behaviours of an API, without requiring either source code or a formal specification of behaviour. Evaluation on an industry-grade REST API shows that our method can produce small and relevant examples that can help engineers to understand the system under exploration.

The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.

Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.

Many current applications use recommendations in order to modify the natural user behavior, such as to increase the number of sales or the time spent on a website. This results in a gap between the final recommendation objective and the classical setup where recommendation candidates are evaluated by their coherence with past user behavior, by predicting either the missing entries in the user-item matrix, or the most likely next event. To bridge this gap, we optimize a recommendation policy for the task of increasing the desired outcome versus the organic user behavior. We show this is equivalent to learning to predict recommendation outcomes under a fully random recommendation policy. To this end, we propose a new domain adaptation algorithm that learns from logged data containing outcomes from a biased recommendation policy and predicts recommendation outcomes according to random exposure. We compare our method against state-of-the-art factorization methods, in addition to new approaches of causal recommendation and show significant improvements.

Attention networks in multimodal learning provide an efficient way to utilize given visual information selectively. However, the computational cost to learn attention distributions for every pair of multimodal input channels is prohibitively expensive. To solve this problem, co-attention builds two separate attention distributions for each modality neglecting the interaction between multimodal inputs. In this paper, we propose bilinear attention networks (BAN) that find bilinear attention distributions to utilize given vision-language information seamlessly. BAN considers bilinear interactions among two groups of input channels, while low-rank bilinear pooling extracts the joint representations for each pair of channels. Furthermore, we propose a variant of multimodal residual networks to exploit eight-attention maps of the BAN efficiently. We quantitatively and qualitatively evaluate our model on visual question answering (VQA 2.0) and Flickr30k Entities datasets, showing that BAN significantly outperforms previous methods and achieves new state-of-the-arts on both datasets.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司