亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider functional data which are measured on a discrete set of observation points. Often such data are measured with additional noise. We explore in this paper the factor structure underlying this type of data. We show that the latent signal can be attributed to the common components of a corresponding factor model and can be estimated accordingly, by borrowing methods from factor model literature. We also show that principal components, which play a key role in functional data analysis, can be accurately estimated after taking such a multivariate instead of a `functional' perspective. In addition to the estimation problem, we also address testing of the null-hypothesis of iid noise. While this assumption is largely prevailing in the literature, we believe that it is often unrealistic and not supported by a residual analysis.

相關內容

We present the first deep learning based architecture for collective matrix tri-factorization (DCMTF) of arbitrary collections of matrices, also known as augmented multi-view data. DCMTF can be used for multi-way spectral clustering of heterogeneous collections of relational data matrices to discover latent clusters in each input matrix, across both dimensions, as well as the strengths of association across clusters. The source code for DCMTF is available on our public repository: //bitbucket.org/cdal/dcmtf_generic

Post-processing immunity is a fundamental property of differential privacy: it enables arbitrary data-independent transformations to differentially private outputs without affecting their privacy guarantees. Post-processing is routinely applied in data-release applications, including census data, which are then used to make allocations with substantial societal impacts. This paper shows that post-processing causes disparate impacts on individuals or groups and analyzes two critical settings: the release of differentially private datasets and the use of such private datasets for downstream decisions, such as the allocation of funds informed by US Census data. In the first setting, the paper proposes tight bounds on the unfairness of traditional post-processing mechanisms, giving a unique tool to decision-makers to quantify the disparate impacts introduced by their release. In the second setting, this paper proposes a novel post-processing mechanism that is (approximately) optimal under different fairness metrics, either reducing fairness issues substantially or reducing the cost of privacy. The theoretical analysis is complemented with numerical simulations on Census data.

Experimental datasets are growing rapidly in size, scope, and detail, but the value of these datasets is limited by unwanted measurement noise. It is therefore tempting to apply analysis techniques that attempt to reduce noise and enhance signals of interest. In this paper, we draw attention to the possibility that denoising methods may introduce bias and lead to incorrect scientific inferences. To present our case, we first review the basic statistical concepts of bias and variance. Denoising techniques typically reduce variance observed across repeated measurements, but this can come at the expense of introducing bias to the average expected outcome. We then conduct three simple simulations that provide concrete examples of how bias may manifest in everyday situations. These simulations reveal several findings that may be surprising and counterintuitive: (i) different methods can be equally effective at reducing variance but some incur bias while others do not, (ii) identifying methods that better recover ground truth does not guarantee the absence of bias, (iii) bias can arise even if one has specific knowledge of properties of the signal of interest. We suggest that researchers should consider and possibly quantify bias before deploying denoising methods on important research data.

Beta coefficients for linear regression models represent the ideal form of an interpretable feature effect. However, for non-linear models and especially generalized linear models, the estimated coefficients cannot be interpreted as a direct feature effect on the predicted outcome. Hence, marginal effects are typically used as approximations for feature effects, either in the shape of derivatives of the prediction function or forward differences in prediction due to a change in a feature value. While marginal effects are commonly used in many scientific fields, they have not yet been adopted as a model-agnostic interpretation method for machine learning models. This may stem from their inflexibility as a univariate feature effect and their inability to deal with the non-linearities found in black box models. We introduce a new class of marginal effects termed forward marginal effects. We argue to abandon derivatives in favor of better-interpretable forward differences. Furthermore, we generalize marginal effects based on forward differences to multivariate changes in feature values. To account for the non-linearity of prediction functions, we introduce a non-linearity measure for marginal effects. We argue against summarizing feature effects of a non-linear prediction function in a single metric such as the average marginal effect. Instead, we propose to partition the feature space to compute conditional average marginal effects on feature subspaces, which serve as conditional feature effect estimates.

In health-pollution cohort studies, accurate predictions of pollutant concentrations at new locations are needed, since the locations of fixed monitoring sites and study participants are often spatially misaligned. For multi-pollution data, principal component analysis (PCA) is often incorporated to obtain low-rank (LR) structure of the data prior to spatial prediction. Recently developed predictive PCA modifies the traditional algorithm to improve the overall predictive performance by leveraging both LR and spatial structures within the data. However, predictive PCA requires complete data or an initial imputation step. Nonparametric imputation techniques without accounting for spatial information may distort the underlying structure of the data, and thus further reduce the predictive performance. We propose a convex optimization problem inspired by the LR matrix completion framework and develop a proximal algorithm to solve it. Missing data are imputed and handled concurrently within the algorithm, which eliminates the necessity of a separate imputation step. We show that our algorithm has low computational burden and leads to reliable predictive performance as the severity of missing data increases.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

Heterogeneous tabular data are the most commonly used form of data and are essential for numerous critical and computationally demanding applications. On homogeneous data sets, deep neural networks have repeatedly shown excellent performance and have therefore been widely adopted. However, their application to modeling tabular data (inference or generation) remains highly challenging. This work provides an overview of state-of-the-art deep learning methods for tabular data. We start by categorizing them into three groups: data transformations, specialized architectures, and regularization models. We then provide a comprehensive overview of the main approaches in each group. A discussion of deep learning approaches for generating tabular data is complemented by strategies for explaining deep models on tabular data. Our primary contribution is to address the main research streams and existing methodologies in this area, while highlighting relevant challenges and open research questions. To the best of our knowledge, this is the first in-depth look at deep learning approaches for tabular data. This work can serve as a valuable starting point and guide for researchers and practitioners interested in deep learning with tabular data.

Conventional supervised learning methods, especially deep ones, are found to be sensitive to out-of-distribution (OOD) examples, largely because the learned representation mixes the semantic factor with the variation factor due to their domain-specific correlation, while only the semantic factor causes the output. To address the problem, we propose a Causal Semantic Generative model (CSG) based on a causal reasoning so that the two factors are modeled separately, and develop methods for OOD prediction from a single training domain, which is common and challenging. The methods are based on the causal invariance principle, with a novel design for both efficient learning and easy prediction. Theoretically, we prove that under certain conditions, CSG can identify the semantic factor by fitting training data, and this semantic-identification guarantees the boundedness of OOD generalization error and the success of adaptation. Empirical study shows improved OOD performance over prevailing baselines.

With the overwhelming popularity of Knowledge Graphs (KGs), researchers have poured attention to link prediction to fill in missing facts for a long time. However, they mainly focus on link prediction on binary relational data, where facts are usually represented as triples in the form of (head entity, relation, tail entity). In practice, n-ary relational facts are also ubiquitous. When encountering such facts, existing studies usually decompose them into triples by introducing a multitude of auxiliary virtual entities and additional triples. These conversions result in the complexity of carrying out link prediction on n-ary relational data. It has even proven that they may cause loss of structure information. To overcome these problems, in this paper, we represent each n-ary relational fact as a set of its role and role-value pairs. We then propose a method called NaLP to conduct link prediction on n-ary relational data, which explicitly models the relatedness of all the role and role-value pairs in an n-ary relational fact. We further extend NaLP by introducing type constraints of roles and role-values without any external type-specific supervision, and proposing a more reasonable negative sampling mechanism. Experimental results validate the effectiveness and merits of the proposed methods.

Training datasets for machine learning often have some form of missingness. For example, to learn a model for deciding whom to give a loan, the available training data includes individuals who were given a loan in the past, but not those who were not. This missingness, if ignored, nullifies any fairness guarantee of the training procedure when the model is deployed. Using causal graphs, we characterize the missingness mechanisms in different real-world scenarios. We show conditions under which various distributions, used in popular fairness algorithms, can or can not be recovered from the training data. Our theoretical results imply that many of these algorithms can not guarantee fairness in practice. Modeling missingness also helps to identify correct design principles for fair algorithms. For example, in multi-stage settings where decisions are made in multiple screening rounds, we use our framework to derive the minimal distributions required to design a fair algorithm. Our proposed algorithm decentralizes the decision-making process and still achieves similar performance to the optimal algorithm that requires centralization and non-recoverable distributions.

北京阿比特科技有限公司