In low-bitrate speech coding, end-to-end speech coding networks aim to learn compact yet expressive features and a powerful decoder in a single network. A challenging problem as such results in unwelcome complexity increase and inferior speech quality. In this paper, we propose to separate the representation learning and information reconstruction tasks. We leverage an end-to-end codec for learning low-dimensional discrete tokens and employ a latent diffusion model to de-quantize coded features into a high-dimensional continuous space, relieving the decoder's burden of de-quantizing and upsampling. To mitigate the issue of over-smooth generation, we introduce midway-infilling with less noise reduction and stronger conditioning. In ablation studies, we investigate the hyperparameters for midway-infilling and latent diffusion space with different dimensions. Subjective listening tests show that our model outperforms the state-of-the-art at two low bitrates, 1.5 and 3 kbps. Codes and samples of this work are available on our webpage.
We develop a distributed Block Chebyshev-Davidson algorithm to solve large-scale leading eigenvalue problems for spectral analysis in spectral clustering. First, the efficiency of the Chebyshev-Davidson algorithm relies on the prior knowledge of the eigenvalue spectrum, which could be expensive to estimate. This issue can be lessened by the analytic spectrum estimation of the Laplacian or normalized Laplacian matrices in spectral clustering, making the proposed algorithm very efficient for spectral clustering. Second, to make the proposed algorithm capable of analyzing big data, a distributed and parallel version has been developed with attractive scalability. The speedup by parallel computing is approximately equivalent to $\sqrt{p}$, where $p$ denotes the number of processes. {Numerical results will be provided to demonstrate its efficiency in spectral clustering and scalability advantage over existing eigensolvers used for spectral clustering in parallel computing environments.}
Existing recurrent optical flow estimation networks are computationally expensive since they use a fixed large number of iterations to update the flow field for each sample. An efficient network should skip iterations when the flow improvement is limited. In this paper, we develop a Context-Aware Iteration Policy Network for efficient optical flow estimation, which determines the optimal number of iterations per sample. The policy network achieves this by learning contextual information to realize whether flow improvement is bottlenecked or minimal. On the one hand, we use iteration embedding and historical hidden cell, which include previous iterations information, to convey how flow has changed from previous iterations. On the other hand, we use the incremental loss to make the policy network implicitly perceive the magnitude of optical flow improvement in the subsequent iteration. Furthermore, the computational complexity in our dynamic network is controllable, allowing us to satisfy various resource preferences with a single trained model. Our policy network can be easily integrated into state-of-the-art optical flow networks. Extensive experiments show that our method maintains performance while reducing FLOPs by about 40%/20% for the Sintel/KITTI datasets.
Adversarial attacks can generate adversarial inputs by applying small but intentionally worst-case perturbations to samples from the dataset, which leads to even state-of-the-art deep neural networks outputting incorrect answers with high confidence. Hence, some adversarial defense techniques are developed to improve the security and robustness of the models and avoid them being attacked. Gradually, a game-like competition between attackers and defenders formed, in which both players would attempt to play their best strategies against each other while maximizing their own payoffs. To solve the game, each player would choose an optimal strategy against the opponent based on the prediction of the opponent's strategy choice. In this work, we are on the defensive side to apply game-theoretic approaches on defending against attacks. We use two randomization methods, random initialization and stochastic activation pruning, to create diversity of networks. Furthermore, we use one denoising technique, super resolution, to improve models' robustness by preprocessing images before attacks. Our experimental results indicate that those three methods can effectively improve the robustness of deep-learning neural networks.
We provide optimal lower bounds for two well-known parameter estimation (also known as statistical estimation) tasks in high dimensions with approximate differential privacy. First, we prove that for any $\alpha \le O(1)$, estimating the covariance of a Gaussian up to spectral error $\alpha$ requires $\tilde{\Omega}\left(\frac{d^{3/2}}{\alpha \varepsilon} + \frac{d}{\alpha^2}\right)$ samples, which is tight up to logarithmic factors. This result improves over previous work which established this for $\alpha \le O\left(\frac{1}{\sqrt{d}}\right)$, and is also simpler than previous work. Next, we prove that estimating the mean of a heavy-tailed distribution with bounded $k$th moments requires $\tilde{\Omega}\left(\frac{d}{\alpha^{k/(k-1)} \varepsilon} + \frac{d}{\alpha^2}\right)$ samples. Previous work for this problem was only able to establish this lower bound against pure differential privacy, or in the special case of $k = 2$. Our techniques follow the method of fingerprinting and are generally quite simple. Our lower bound for heavy-tailed estimation is based on a black-box reduction from privately estimating identity-covariance Gaussians. Our lower bound for covariance estimation utilizes a Bayesian approach to show that, under an Inverse Wishart prior distribution for the covariance matrix, no private estimator can be accurate even in expectation, without sufficiently many samples.
Deploying end-to-end speech recognition models with limited computing resources remains challenging, despite their impressive performance. Given the gradual increase in model size and the wide range of model applications, selectively executing model components for different inputs to improve the inference efficiency is of great interest. In this paper, we propose a dynamic layer-skipping method that leverages the CTC blank output from intermediate layers to trigger the skipping of the last few encoder layers for frames with high blank probabilities. Furthermore, we factorize the CTC output distribution and perform knowledge distillation on intermediate layers to reduce computation and improve recognition accuracy. Experimental results show that by utilizing the CTC blank, the encoder layer depth can be adjusted dynamically, resulting in 29% acceleration of the CTC model inference with minor performance degradation.
While solving complex manipulation tasks, manipulation policies often need to learn a set of diverse skills to accomplish these tasks. The set of skills is often quite multimodal - each one may have a quite distinct distribution of actions and states. Standard deep policy-learning algorithms often model policies as deep neural networks with a single output head (deterministic or stochastic). This structure requires the network to learn to switch between modes internally, which can lead to lower sample efficiency and poor performance. In this paper we explore a simple structure which is conducive to skill learning required for so many of the manipulation tasks. Specifically, we propose a policy architecture that sequentially executes different action heads for fixed durations, enabling the learning of primitive skills such as reaching and grasping. Our empirical evaluation on the Metaworld tasks reveals that this simple structure outperforms standard policy learning methods, highlighting its potential for improved skill acquisition.
Fraud detection aims to discover fraudsters deceiving other users by, for example, leaving fake reviews or making abnormal transactions. Graph-based fraud detection methods consider this task as a classification problem with two classes: frauds or normal. We address this problem using Graph Neural Networks (GNNs) by proposing a dynamic relation-attentive aggregation mechanism. Based on the observation that many real-world graphs include different types of relations, we propose to learn a node representation per relation and aggregate the node representations using a learnable attention function that assigns a different attention coefficient to each relation. Furthermore, we combine the node representations from different layers to consider both the local and global structures of a target node, which is beneficial to improving the performance of fraud detection on graphs with heterophily. By employing dynamic graph attention in all the aggregation processes, our method adaptively computes the attention coefficients for each node. Experimental results show that our method, DRAG, outperforms state-of-the-art fraud detection methods on real-world benchmark datasets.
Sample efficiency is crucial in optimization, particularly in black-box scenarios characterized by expensive evaluations and zeroth-order feedback. When computing resources are plentiful, Bayesian optimization is often favored over evolution strategies. In this paper, we introduce a full invariance oriented evolution strategies algorithm, derived from its corresponding framework, that effectively rivals the leading Bayesian optimization method in tasks with dimensions at the upper limit of Bayesian capability. Specifically, we first build the framework InvIGO that fully incorporates historical information while retaining the full invariant and computational complexity. We then exemplify InvIGO on multi-dimensional Gaussian, which gives an invariant and scalable optimizer SynCMA . The theoretical behavior and advantages of our algorithm over other Gaussian-based evolution strategies are further analyzed. Finally, We benchmark SynCMA against leading algorithms in Bayesian optimization and evolution strategies on various high dimension tasks, in cluding Mujoco locomotion tasks, rover planning task and synthetic functions. In all scenarios, SynCMA demonstrates great competence, if not dominance, over other algorithms in sample efficiency, showing the underdeveloped potential of property oriented evolution strategies.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.