We introduce HuTuMotion, an innovative approach for generating natural human motions that navigates latent motion diffusion models by leveraging few-shot human feedback. Unlike existing approaches that sample latent variables from a standard normal prior distribution, our method adapts the prior distribution to better suit the characteristics of the data, as indicated by human feedback, thus enhancing the quality of motion generation. Furthermore, our findings reveal that utilizing few-shot feedback can yield performance levels on par with those attained through extensive human feedback. This discovery emphasizes the potential and efficiency of incorporating few-shot human-guided optimization within latent diffusion models for personalized and style-aware human motion generation applications. The experimental results show the significantly superior performance of our method over existing state-of-the-art approaches.
This study investigates the asymptotic dynamics of alternating minimization applied to optimize a bilinear non-convex function with normally distributed covariates. We employ the replica method from statistical physics in a multi-step approach to precisely trace the algorithm's evolution. Our findings indicate that the dynamics can be described effectively by a two--dimensional discrete stochastic process, where each step depends on all previous time steps, revealing a memory dependency in the procedure. The theoretical framework developed in this work is broadly applicable for the analysis of various iterative algorithms, extending beyond the scope of alternating minimization.
Deep neural networks are exploited using natural adversarial samples, which have no impact on human perception but are misclassified. Current approaches often rely on the white-box nature of deep neural networks to generate these adversarial samples or alter the distribution of adversarial samples compared to training distribution. To alleviate the limitations of current approaches, we propose EvoSeed, a novel evolutionary strategy-based search algorithmic framework to generate natural adversarial samples. Our EvoSeed framework uses auxiliary Diffusion and Classifier models to operate in a model-agnostic black-box setting. We employ CMA-ES to optimize the search for an adversarial seed vector, which, when processed by the Conditional Diffusion Model, results in an unrestricted natural adversarial sample misclassified by the Classifier Model. Experiments show that generated adversarial images are of high image quality and are transferable to different classifiers. Our approach demonstrates promise in enhancing the quality of adversarial samples using evolutionary algorithms. We hope our research opens new avenues to enhance the robustness of deep neural networks in real-world scenarios. Project Website can be accessed at \url{//shashankkotyan.github.io/EvoSeed}.
Semantic scene completion (SSC) has recently gained popularity because it can provide both semantic and geometric information that can be used directly for autonomous vehicle navigation. However, there are still challenges to overcome. SSC is often hampered by occlusion and short-range perception due to sensor limitations, which can pose safety risks. This paper proposes a fundamental solution to this problem by leveraging vehicle-to-vehicle (V2V) communication. We propose the first generalized collaborative SSC framework that allows autonomous vehicles to share sensing information from different sensor views to jointly perform SSC tasks. To validate the proposed framework, we further build V2VSSC, the first V2V SSC benchmark, on top of the large-scale V2V perception dataset OPV2V. Extensive experiments demonstrate that by leveraging V2V communication, the SSC performance can be increased by 8.3% on geometric metric IoU and 6.0% mIOU.
In this study, we introduce BirdNeRF, an adaptation of Neural Radiance Fields (NeRF) designed specifically for reconstructing large-scale scenes using aerial imagery. Unlike previous research focused on small-scale and object-centric NeRF reconstruction, our approach addresses multiple challenges, including (1) Addressing the issue of slow training and rendering associated with large models. (2) Meeting the computational demands necessitated by modeling a substantial number of images, requiring extensive resources such as high-performance GPUs. (3) Overcoming significant artifacts and low visual fidelity commonly observed in large-scale reconstruction tasks due to limited model capacity. Specifically, we present a novel bird-view pose-based spatial decomposition algorithm that decomposes a large aerial image set into multiple small sets with appropriately sized overlaps, allowing us to train individual NeRFs of sub-scene. This decomposition approach not only decouples rendering time from the scene size but also enables rendering to scale seamlessly to arbitrarily large environments. Moreover, it allows for per-block updates of the environment, enhancing the flexibility and adaptability of the reconstruction process. Additionally, we propose a projection-guided novel view re-rendering strategy, which aids in effectively utilizing the independently trained sub-scenes to generate superior rendering results. We evaluate our approach on existing datasets as well as against our own drone footage, improving reconstruction speed by 10x over classical photogrammetry software and 50x over state-of-the-art large-scale NeRF solution, on a single GPU with similar rendering quality.
We introduce DexDiffuser, a novel dexterous grasping method that generates, evaluates, and refines grasps on partial object point clouds. DexDiffuser includes the conditional diffusion-based grasp sampler DexSampler and the dexterous grasp evaluator DexEvaluator. DexSampler generates high-quality grasps conditioned on object point clouds by iterative denoising of randomly sampled grasps. We also introduce two grasp refinement strategies: Evaluator-Guided Diffusion (EGD) and Evaluator-based Sampling Refinement (ESR). Our simulation and real-world experiments on the Allegro Hand consistently demonstrate that DexDiffuser outperforms the state-of-the-art multi-finger grasp generation method FFHNet with an, on average, 21.71--22.20\% higher grasp success rate.
Three-dimensional (3D) imaging is popular in medical applications, however, anisotropic 3D volumes with thick, low-spatial-resolution slices are often acquired to reduce scan times. Deep learning (DL) offers a solution to recover high-resolution features through super-resolution reconstruction (SRR). Unfortunately, paired training data is unavailable in many 3D medical applications and therefore we propose a novel unpaired approach; CLADE (Cycle Loss Augmented Degradation Enhancement). CLADE uses a modified CycleGAN architecture with a cycle-consistent gradient mapping loss, to learn SRR of the low-resolution dimension, from disjoint patches of the high-resolution plane within the anisotropic 3D volume data itself. We show the feasibility of CLADE in abdominal MRI and abdominal CT and demonstrate significant improvements in CLADE image quality over low-resolution volumes and state-of-the-art self-supervised SRR; SMORE (Synthetic Multi-Orientation Resolution Enhancement). Quantitative PIQUE (qualitative perception-based image quality evaluator) scores and quantitative edge sharpness (ES - calculated as the maximum gradient of pixel intensities over a border of interest), showed superior performance for CLADE in both MRI and CT. Qualitatively CLADE had the best overall image quality and highest perceptual ES over the low-resolution volumes and SMORE. This paper demonstrates the potential of using CLADE for super-resolution reconstruction of anisotropic 3D medical imaging data without the need for paired 3D training data.
The efficacy of self-supervised speech models has been validated, yet the optimal utilization of their representations remains challenging across diverse tasks. In this study, we delve into Acoustic Word Embeddings (AWEs), a fixed-length feature derived from continuous representations, to explore their advantages in specific tasks. AWEs have previously shown utility in capturing acoustic discriminability. In light of this, we propose measuring layer-wise similarity between AWEs and word embeddings, aiming to further investigate the inherent context within AWEs. Moreover, we evaluate the contribution of AWEs, in comparison to other types of speech features, in the context of Speech Emotion Recognition (SER). Through a comparative experiment and a layer-wise accuracy analysis on two distinct corpora, IEMOCAP and ESD, we explore differences between AWEs and raw self-supervised representations, as well as the proper utilization of AWEs alone and in combination with word embeddings. Our findings underscore the acoustic context conveyed by AWEs and showcase the highly competitive SER accuracies by appropriately employing AWEs.
Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.