亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For many decades, advances in static verification have focused on linear integer arithmetic (LIA) programs. Many real-world programs are, however, written with non-linear integer arithmetic (NLA) expressions, such as programs that model physical events, control systems, or nonlinear activation functions in neural networks. While there are some approaches to reasoning about such NLA programs, still many verification tools fall short when trying to analyze them. To expand the scope of existing tools, we introduce a new method of converting programs with NLA expressions into semantically equivalent LIA programs via a technique we call dual rewriting. Dual rewriting discovers a linear replacement for an NLA Boolean expression (e.g. as found in conditional branching), simultaneously exploring both the positive and negative side of the condition, and using a combination of static validation and dynamic generalization of counterexamples. While perhaps surprising at first, this is often possible because the truth value of a Boolean NLA expression can be characterized in terms of a Boolean combination of linearly-described regions/intervals where the expression is true and those where it is false. The upshot is that rewriting NLA expressions to LIA expressions beforehand enables off-the-shelf LIA tools to be applied to the wider class of NLA programs. We built a new tool DrNLA and show it can discover LIA replacements for a variety of NLA programs. We then applied our work to branching-time verification of NLA programs, creating the first set of such benchmarks (92 in total) and showing that DrNLA's rewriting enable tools such as FuncTion and T2 to verify CTL properties of 42 programs that previously could not be verified. We also show a potential use of DrNLA assisting Frama-C in program slicing, and report that execution speed is not impacted much by rewriting.

相關內容

這個新版本的工具會議系列恢復了從1989年到2012年的50個會議的傳統。工具最初是“面向對象語言和系統的技術”,后來發展到包括軟件技術的所有創新方面。今天許多最重要的軟件概念都是在這里首次引入的。2019年TOOLS 50+1在俄羅斯喀山附近舉行,以同樣的創新精神、對所有與軟件相關的事物的熱情、科學穩健性和行業適用性的結合以及歡迎該領域所有趨勢和社區的開放態度,延續了該系列。 官網鏈接: · 數據集 · 情景 · Extensibility · 標注 ·
2023 年 8 月 18 日

We present Audiovisual Moments in Time (AVMIT), a large-scale dataset of audiovisual action events. In an extensive annotation task 11 participants labelled a subset of 3-second audiovisual videos from the Moments in Time dataset (MIT). For each trial, participants assessed whether the labelled audiovisual action event was present and whether it was the most prominent feature of the video. The dataset includes the annotation of 57,177 audiovisual videos, each independently evaluated by 3 of 11 trained participants. From this initial collection, we created a curated test set of 16 distinct action classes, with 60 videos each (960 videos). We also offer 2 sets of pre-computed audiovisual feature embeddings, using VGGish/YamNet for audio data and VGG16/EfficientNetB0 for visual data, thereby lowering the barrier to entry for audiovisual DNN research. We explored the advantages of AVMIT annotations and feature embeddings to improve performance on audiovisual event recognition. A series of 6 Recurrent Neural Networks (RNNs) were trained on either AVMIT-filtered audiovisual events or modality-agnostic events from MIT, and then tested on our audiovisual test set. In all RNNs, top 1 accuracy was increased by 2.71-5.94\% by training exclusively on audiovisual events, even outweighing a three-fold increase in training data. We anticipate that the newly annotated AVMIT dataset will serve as a valuable resource for research and comparative experiments involving computational models and human participants, specifically when addressing research questions where audiovisual correspondence is of critical importance.

Relational Language-Image Pre-training (RLIP) aims to align vision representations with relational texts, thereby advancing the capability of relational reasoning in computer vision tasks. However, hindered by the slow convergence of RLIPv1 architecture and the limited availability of existing scene graph data, scaling RLIPv1 is challenging. In this paper, we propose RLIPv2, a fast converging model that enables the scaling of relational pre-training to large-scale pseudo-labelled scene graph data. To enable fast scaling, RLIPv2 introduces Asymmetric Language-Image Fusion (ALIF), a mechanism that facilitates earlier and deeper gated cross-modal fusion with sparsified language encoding layers. ALIF leads to comparable or better performance than RLIPv1 in a fraction of the time for pre-training and fine-tuning. To obtain scene graph data at scale, we extend object detection datasets with free-form relation labels by introducing a captioner (e.g., BLIP) and a designed Relation Tagger. The Relation Tagger assigns BLIP-generated relation texts to region pairs, thus enabling larger-scale relational pre-training. Through extensive experiments conducted on Human-Object Interaction Detection and Scene Graph Generation, RLIPv2 shows state-of-the-art performance on three benchmarks under fully-finetuning, few-shot and zero-shot settings. Notably, the largest RLIPv2 achieves 23.29mAP on HICO-DET without any fine-tuning, yields 32.22mAP with just 1% data and yields 45.09mAP with 100% data. Code and models are publicly available at //github.com/JacobYuan7/RLIPv2.

We introduce a Self-supervised Contrastive Representation Learning Approach for Time Series Anomaly Detection (CARLA), an innovative end-to-end self-supervised framework carefully developed to identify anomalous patterns in both univariate and multivariate time series data. By taking advantage of contrastive representation learning, We introduce an innovative end-to-end self-supervised deep learning framework carefully developed to identify anomalous patterns in both univariate and multivariate time series data. By taking advantage of contrastive representation learning, CARLA effectively generates robust representations for time series windows. It achieves this by 1) learning similar representations for temporally close windows and dissimilar representations for windows and their equivalent anomalous windows and 2) employing a self-supervised approach to classify normal/anomalous representations of windows based on their nearest/furthest neighbours in the representation space. Most of the existing models focus on learning normal behaviour. The normal boundary is often tightly defined, which can result in slight deviations being classified as anomalies, resulting in a high false positive rate and limited ability to generalise normal patterns. CARLA's contrastive learning methodology promotes the production of highly consistent and discriminative predictions, thereby empowering us to adeptly address the inherent challenges associated with anomaly detection in time series data. Through extensive experimentation on 7 standard real-world time series anomaly detection benchmark datasets, CARLA demonstrates F1 and AU-PR superior to existing state-of-the-art results. Our research highlights the immense potential of contrastive representation learning in advancing the field of time series anomaly detection, thus paving the way for novel applications and in-depth exploration in this domain.

We introduce EgoSchema, a very long-form video question-answering dataset, and benchmark to evaluate long video understanding capabilities of modern vision and language systems. Derived from Ego4D, EgoSchema consists of over 5000 human curated multiple choice question answer pairs, spanning over 250 hours of real video data, covering a very broad range of natural human activity and behavior. For each question, EgoSchema requires the correct answer to be selected between five given options based on a three-minute-long video clip. While some prior works have proposed video datasets with long clip lengths, we posit that merely the length of the video clip does not truly capture the temporal difficulty of the video task that is being considered. To remedy this, we introduce temporal certificate sets, a general notion for capturing the intrinsic temporal understanding length associated with a broad range of video understanding tasks & datasets. Based on this metric, we find EgoSchema to have intrinsic temporal lengths over 5.7x longer than the second closest dataset and 10x to 100x longer than any other video understanding dataset. Further, our evaluation of several current state-of-the-art video and language models shows them to be severely lacking in long-term video understanding capabilities. Even models with several billions of parameters achieve QA accuracy less than 33% (random is 20%) on the EgoSchema multi-choice question answering task, while humans achieve about 76% accuracy. We posit that \name{}{}, with its long intrinsic temporal structures and diverse complexity, would serve as a valuable evaluation probe for developing effective long-term video understanding systems in the future. Data and Zero-shot model evaluation code are open-sourced for both public and commercial use under the Ego4D license at //egoschema.github.io

Video-language pre-trained models have shown remarkable success in guiding video question-answering (VideoQA) tasks. However, due to the length of video sequences, training large-scale video-based models incurs considerably higher costs than training image-based ones. This motivates us to leverage the knowledge from image-based pretraining, despite the obvious gaps between image and video domains. To bridge these gaps, in this paper, we propose Tem-Adapter, which enables the learning of temporal dynamics and complex semantics by a visual Temporal Aligner and a textual Semantic Aligner. Unlike conventional pretrained knowledge adaptation methods that only concentrate on the downstream task objective, the Temporal Aligner introduces an extra language-guided autoregressive task aimed at facilitating the learning of temporal dependencies, with the objective of predicting future states based on historical clues and language guidance that describes event progression. Besides, to reduce the semantic gap and adapt the textual representation for better event description, we introduce a Semantic Aligner that first designs a template to fuse question and answer pairs as event descriptions and then learns a Transformer decoder with the whole video sequence as guidance for refinement. We evaluate Tem-Adapter and different pre-train transferring methods on two VideoQA benchmarks, and the significant performance improvement demonstrates the effectiveness of our method.

In the telecom domain, precise forecasting of time series patterns, such as cell key performance indicators (KPIs), plays a pivotal role in enhancing service quality and operational efficiency. State-of-the-art forecasting approaches prioritize forecasting accuracy at the expense of computational performance, rendering them less suitable for data-intensive applications encompassing systems with a multitude of time series variables. To address this issue, we introduce QBSD, a live forecasting approach tailored to optimize the trade-off between accuracy and computational complexity. We have evaluated the performance of QBSD against state-of-the-art forecasting approaches on publicly available datasets. We have also extended this investigation to our curated network KPI dataset, now publicly accessible, to showcase the effect of dynamic operating ranges that varies with time. The results demonstrate that the proposed method excels in runtime efficiency compared to the leading algorithms available while maintaining competitive forecast accuracy.

In recent years, discriminative self-supervised methods have made significant strides in advancing various visual tasks. The central idea of learning a data encoder that is robust to data distortions/augmentations is straightforward yet highly effective. Although many studies have demonstrated the empirical success of various learning methods, the resulting learned representations can exhibit instability and hinder downstream performance. In this study, we analyze discriminative self-supervised methods from a causal perspective to explain these unstable behaviors and propose solutions to overcome them. Our approach draws inspiration from prior works that empirically demonstrate the ability of discriminative self-supervised methods to demix ground truth causal sources to some extent. Unlike previous work on causality-empowered representation learning, we do not apply our solutions during the training process but rather during the inference process to improve time efficiency. Through experiments on both controlled image datasets and realistic image datasets, we show that our proposed solutions, which involve tempering a linear transformation with controlled synthetic data, are effective in addressing these issues.

Dialogue systems for Automatic Differential Diagnosis (ADD) have a wide range of real-life applications. These dialogue systems are promising for providing easy access and reducing medical costs. Building end-to-end ADD dialogue systems requires dialogue training datasets. However, to the best of our knowledge, there is no publicly available ADD dialogue dataset in English (although non-English datasets exist). Driven by this, we introduce MDDial, the first differential diagnosis dialogue dataset in English which can aid to build and evaluate end-to-end ADD dialogue systems. Additionally, earlier studies present the accuracy of diagnosis and symptoms either individually or as a combined weighted score. This method overlooks the connection between the symptoms and the diagnosis. We introduce a unified score for the ADD system that takes into account the interplay between symptoms and diagnosis. This score also indicates the system's reliability. To the end, we train two moderate-size of language models on MDDial. Our experiments suggest that while these language models can perform well on many natural language understanding tasks, including dialogue tasks in the general domain, they struggle to relate relevant symptoms and disease and thus have poor performance on MDDial. MDDial will be released publicly to aid the study of ADD dialogue research.

Object detection with transformers (DETR) reaches competitive performance with Faster R-CNN via a transformer encoder-decoder architecture. Inspired by the great success of pre-training transformers in natural language processing, we propose a pretext task named random query patch detection to unsupervisedly pre-train DETR (UP-DETR) for object detection. Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the original image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade-off multi-task learning of classification and localization in the pretext task, we freeze the CNN backbone and propose a patch feature reconstruction branch which is jointly optimized with patch detection. (2) To perform multi-query localization, we introduce UP-DETR from single-query patch and extend it to multi-query patches with object query shuffle and attention mask. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher precision on PASCAL VOC and COCO datasets. The code will be available soon.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

北京阿比特科技有限公司