If generalist robots are to operate in truly unstructured environments, they need to be able to recognize and reason about novel objects and scenarios. Such objects and scenarios might not be present in the robot's own training data. We propose SuSIE, a method that leverages an image-editing diffusion model to act as a high-level planner by proposing intermediate subgoals that a low-level controller can accomplish. Specifically, we finetune InstructPix2Pix on video data, consisting of both human videos and robot rollouts, such that it outputs hypothetical future "subgoal" observations given the robot's current observation and a language command. We also use the robot data to train a low-level goal-conditioned policy to act as the aforementioned low-level controller. We find that the high-level subgoal predictions can utilize Internet-scale pretraining and visual understanding to guide the low-level goal-conditioned policy, achieving significantly better generalization and precision than conventional language-conditioned policies. We achieve state-of-the-art results on the CALVIN benchmark, and also demonstrate robust generalization on real-world manipulation tasks, beating strong baselines that have access to privileged information or that utilize orders of magnitude more compute and training data. The project website can be found at //rail-berkeley.github.io/susie .
We pursue the goal of developing robots that can interact zero-shot with generic unseen objects via a diverse repertoire of manipulation skills and show how passive human videos can serve as a rich source of data for learning such generalist robots. Unlike typical robot learning approaches which directly learn how a robot should act from interaction data, we adopt a factorized approach that can leverage large-scale human videos to learn how a human would accomplish a desired task (a human plan), followed by translating this plan to the robots embodiment. Specifically, we learn a human plan predictor that, given a current image of a scene and a goal image, predicts the future hand and object configurations. We combine this with a translation module that learns a plan-conditioned robot manipulation policy, and allows following humans plans for generic manipulation tasks in a zero-shot manner with no deployment-time training. Importantly, while the plan predictor can leverage large-scale human videos for learning, the translation module only requires a small amount of in-domain data, and can generalize to tasks not seen during training. We show that our learned system can perform over 16 manipulation skills that generalize to 40 objects, encompassing 100 real-world tasks for table-top manipulation and diverse in-the-wild manipulation. //homangab.github.io/hopman/
As one of the potential key technologies of 6G, semantic communication is still in its infancy and there are many open problems, such as semantic entropy definition and semantic channel coding theory. To address these challenges, we investigate semantic information measures and semantic channel coding theorem. Specifically, we propose a semantic entropy definition as the uncertainty in the semantic interpretation of random variable symbols in the context of knowledge bases, which can be transformed into existing semantic entropy definitions under given conditions. Moreover, different from traditional communications, semantic communications can achieve accurate transmission of semantic information under a non-zero bit error rate. Based on this property, we derive a semantic channel coding theorem for a typical semantic communication with many-to-one source (i.e., multiple source sequences express the same meaning), and prove its achievability and converse based on a generalized Fano's inequality. Finally, numerical results verify the effectiveness of the proposed semantic entropy and semantic channel coding theorem.
With the proliferation of edge computing, efficient AI inference on edge devices has become essential for intelligent applications such as autonomous vehicles and VR/AR. In this context, we address the problem of efficient remote object recognition by optimizing feature transmission between mobile devices and edge servers. We propose an online optimization framework to address the challenge of dynamic channel conditions and device mobility in an end-to-end communication system. Our approach builds upon existing methods by leveraging a semantic knowledge base to drive multi-level feature transmission, accounting for temporal factors and dynamic elements throughout the transmission process. To solve the online optimization problem, we design a novel soft actor-critic-based deep reinforcement learning system with a carefully designed reward function for real-time decision-making, overcoming the optimization difficulty of the NP-hard problem and achieving the minimization of semantic loss while respecting latency constraints. Numerical results showcase the superiority of our approach compared to traditional greedy methods under various system setups.
With the increasing demands from passengers for data-intensive services, millimeter-wave (mmWave) communication is considered as an effective technique to release the transmission pressure on high speed train (HST) networks. However, mmWave signals ncounter severe losses when passing through the carriage, which decreases the quality of services on board. In this paper, we investigate an intelligent refracting surface (IRS)-assisted HST communication system. Herein, an IRS is deployed on the train window to dynamically reconfigure the propagation environment, and a hybrid time division multiple access-nonorthogonal multiple access scheme is leveraged for interference mitigation. We aim to maximize the overall throughput while taking into account the constraints imposed by base station beamforming, IRS discrete phase shifts and transmit power. To obtain a practical solution, we employ an alternating optimization method and propose a two-stage algorithm. In the first stage, the successive convex approximation method and branch and bound algorithm are leveraged for IRS phase shift design. In the second stage, the Lagrangian multiplier method is utilized for power allocation. Simulation results demonstrate the benefits of IRS adoption and power allocation for throughput improvement in mmWave HST networks.
As robots become more widely available outside industrial settings, the need for reliable object grasping and manipulation is increasing. In such environments, robots must be able to grasp and manipulate novel objects in various situations. This paper presents GraspCaps, a novel architecture based on Capsule Networks for generating per-point 6D grasp configurations for familiar objects. GraspCaps extracts a rich feature vector of the objects present in the point cloud input, which is then used to generate per-point grasp vectors. This approach allows the network to learn specific grasping strategies for each object category. In addition to GraspCaps, the paper also presents a method for generating a large object-grasping dataset using simulated annealing. The obtained dataset is then used to train the GraspCaps network. Through extensive experiments, we evaluate the performance of the proposed approach, particularly in terms of the success rate of grasping familiar objects in challenging real and simulated scenarios. The experimental results showed that the overall object-grasping performance of the proposed approach is significantly better than the selected baseline. This superior performance highlights the effectiveness of the GraspCaps in achieving successful object grasping across various scenarios.
Deep neural networks, while powerful for image classification, often operate as "black boxes," complicating the understanding of their decision-making processes. Various explanation methods, particularly those generating saliency maps, aim to address this challenge. However, the inconsistency issues of faithfulness metrics hinder reliable benchmarking of explanation methods. This paper employs an approach inspired by psychometrics, utilizing Krippendorf's alpha to quantify the benchmark reliability of post-hoc methods in image classification. The study proposes model training modifications, including feeding perturbed samples and employing focal loss, to enhance robustness and calibration. Empirical evaluations demonstrate significant improvements in benchmark reliability across metrics, datasets, and post-hoc methods. This pioneering work establishes a foundation for more reliable evaluation practices in the realm of post-hoc explanation methods, emphasizing the importance of model robustness in the assessment process.
Despite lagging behind their modal cousins in many respects, Vision Transformers have provided an interesting opportunity to bridge the gap between sequence modeling and image modeling. Up until now however, vision transformers have largely been held back, due to both computational inefficiency, and lack of proper handling of spatial dimensions. In this paper, we introduce the Cross-Axis Transformer. CAT is a model inspired by both Axial Transformers, and Microsoft's recent Retentive Network, that drastically reduces the required number of floating point operations required to process an image, while simultaneously converging faster and more accurately than the Vision Transformers it replaces.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Seamlessly interacting with humans or robots is hard because these agents are non-stationary. They update their policy in response to the ego agent's behavior, and the ego agent must anticipate these changes to co-adapt. Inspired by humans, we recognize that robots do not need to explicitly model every low-level action another agent will make; instead, we can capture the latent strategy of other agents through high-level representations. We propose a reinforcement learning-based framework for learning latent representations of an agent's policy, where the ego agent identifies the relationship between its behavior and the other agent's future strategy. The ego agent then leverages these latent dynamics to influence the other agent, purposely guiding them towards policies suitable for co-adaptation. Across several simulated domains and a real-world air hockey game, our approach outperforms the alternatives and learns to influence the other agent.