亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the rapid development of big data and computing devices, low-latency automatic trading platforms based on real-time information acquisition have become the main components of the stock trading market, so the topic of quantitative trading has received widespread attention. And for non-strongly efficient trading markets, human emotions and expectations always dominate market trends and trading decisions. Therefore, this paper starts from the theory of emotion, taking East Money as an example, crawling user comment titles data from its corresponding stock bar and performing data cleaning. Subsequently, a natural language processing model BERT was constructed, and the BERT model was fine-tuned using existing annotated data sets. The experimental results show that the fine-tuned model has different degrees of performance improvement compared to the original model and the baseline model. Subsequently, based on the above model, the user comment data crawled is labeled with emotional polarity, and the obtained label information is combined with the Alpha191 model to participate in regression, and significant regression results are obtained. Subsequently, the regression model is used to predict the average price change for the next five days, and use it as a signal to guide automatic trading. The experimental results show that the incorporation of emotional factors increased the return rate by 73.8\% compared to the baseline during the trading period, and by 32.41\% compared to the original alpha191 model. Finally, we discuss the advantages and disadvantages of incorporating emotional factors into quantitative trading, and give possible directions for further research in the future.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · Automator · 黑盒 · Prompt ·
2023 年 11 月 6 日

Despite efforts to align large language models to produce harmless responses, they are still vulnerable to jailbreak prompts that elicit unrestricted behaviour. In this work, we investigate persona modulation as a black-box jailbreaking method to steer a target model to take on personalities that are willing to comply with harmful instructions. Rather than manually crafting prompts for each persona, we automate the generation of jailbreaks using a language model assistant. We demonstrate a range of harmful completions made possible by persona modulation, including detailed instructions for synthesising methamphetamine, building a bomb, and laundering money. These automated attacks achieve a harmful completion rate of 42.5% in GPT-4, which is 185 times larger than before modulation (0.23%). These prompts also transfer to Claude 2 and Vicuna with harmful completion rates of 61.0% and 35.9%, respectively. Our work reveals yet another vulnerability in commercial large language models and highlights the need for more comprehensive safeguards.

With the development of new sensors and monitoring devices, more sources of data become available to be used as inputs for machine learning models. These can on the one hand help to improve the accuracy of a model. On the other hand, combining these new inputs with historical data remains a challenge that has not yet been studied in enough detail. In this work, we propose a transfer learning algorithm that combines new and historical data with different input dimensions. This approach is easy to implement, efficient, with computational complexity equivalent to the ordinary least-squares method, and requires no hyperparameter tuning, making it straightforward to apply when the new data is limited. Different from other approaches, we provide a rigorous theoretical study of its robustness, showing that it cannot be outperformed by a baseline that utilizes only the new data. Our approach achieves state-of-the-art performance on 9 real-life datasets, outperforming the linear DSFT, another linear transfer learning algorithm, and performing comparably to non-linear DSFT.

As a new technology to reconfigure wireless communication environment by signal reflection controlled by software, intelligent reflecting surface (IRS) has attracted lots of attention in recent years. Compared with conventional relay system, the relay system aided by IRS can effectively save the cost and energy consumption, and significantly enhance the system performance. However, the phase quantization error generated by IRS with discrete phase shifter may degrade the receiving performance of the receiver. To analyze the performance loss arising from IRS phase quantization error, in accordance with the law of large numbers and Rayleigh distribution, the closed-form expressions for the signal-to-noise ratio (SNR) performance loss and achievable rate of the double IRS-aided amplify-and-forward (AF) relay network, which are associated with the number of phase shifter quantization bits, are derived in the Rayleigh channels. In addition, their approximate performance loss closed-form expressions are also derived based on the Taylor series expansion. Simulation results show that the performance losses of SNR and achievable rate decrease with the number of quantization bits increases gradually, and increase with the number $k$ of IRS phase shift elements. The SNR and achievable rate performance losses of the system are smaller than 0.06dB and 0.03bits/s/Hz when $k$ is equal to 4 and 3, respectively.

With the agile development process of most academic and corporate entities, designing a robust computational back-end system that can support their ever-changing data needs is a constantly evolving challenge. We propose the implementation of a data and language-agnostic system design that handles different data schemes and sources while subsequently providing researchers and developers a way to connect to it that is supported by a vast majority of programming languages. To validate the efficacy of a system with this proposed architecture, we integrate various data sources throughout the decentralized finance (DeFi) space, specifically from DeFi lending protocols, retrieving tens of millions of data points to perform analytics through this system. We then access and process the retrieved data through several different programming languages (R-Lang, Python, and Java). Finally, we analyze the performance of the proposed architecture in relation to other high-performance systems and explore how this system performs under a high computational load.

We propose a framework for expressing and analyzing the Quality of Service (QoS) of message-passing systems using a choreographic model that consists of g-choreographies and Communicating Finite State machines (CFSMs). The following are our three main contributions: (I) an extension of CFSMs with non-functional contracts to specify quantitative constraints of local computations, (II) a dynamic temporal logic capable of expressing QoS, properties of systems relative to the g-choreography that specifies the communication protocol, (III) the semi-decidability of our logic which enables a bounded model-checking approach to verify QoS property of communicating systems.

With the development of multimodality and large language models, the deep learning-based technique for medical image captioning holds the potential to offer valuable diagnostic recommendations. However, current generic text and image pre-trained models do not yield satisfactory results when it comes to describing intricate details within medical images. In this paper, we present a novel medical image captioning method guided by the segment anything model (SAM) to enable enhanced encoding with both general and detailed feature extraction. In addition, our approach employs a distinctive pre-training strategy with mixed semantic learning to simultaneously capture both the overall information and finer details within medical images. We demonstrate the effectiveness of this approach, as it outperforms the pre-trained BLIP2 model on various evaluation metrics for generating descriptions of medical images.

Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Existing methods for vision-and-language learning typically require designing task-specific architectures and objectives for each task. For example, a multi-label answer classifier for visual question answering, a region scorer for referring expression comprehension, and a language decoder for image captioning, etc. To alleviate these hassles, in this work, we propose a unified framework that learns different tasks in a single architecture with the same language modeling objective, i.e., multimodal conditional text generation, where our models learn to generate labels in text based on the visual and textual inputs. On 7 popular vision-and-language benchmarks, including visual question answering, referring expression comprehension, visual commonsense reasoning, most of which have been previously modeled as discriminative tasks, our generative approach (with a single unified architecture) reaches comparable performance to recent task-specific state-of-the-art vision-and-language models. Moreover, our generative approach shows better generalization ability on answering questions that have rare answers. In addition, we show that our framework allows multi-task learning in a single architecture with a single set of parameters, which achieves similar performance to separately optimized single-task models. Our code will be publicly available at: //github.com/j-min/VL-T5

Due to the significance and value in human-computer interaction and natural language processing, task-oriented dialog systems are attracting more and more attention in both academic and industrial communities. In this paper, we survey recent advances and challenges in an issue-specific manner. We discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog system modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning to achieve better task-completion performance, and (3) integrating domain ontology knowledge into the dialog model in both pipeline and end-to-end models. We also review the recent progresses in dialog evaluation and some widely-used corpora. We believe that this survey can shed a light on future research in task-oriented dialog systems.

北京阿比特科技有限公司