Molecular Communication via Diffusion (MCvD) is a prominent small-scale technology, which roots from the nature. Molecular single-input-single-output (SISO) topology is one of the most studied molecular networks in the literature, with solid analytical foundations on channel behavior and advanced modulation techniques. Although molecular SISO topologies are well-studied, the literature is yet to provide sufficient analytical modeling on multiple-output systems with fully absorbing receivers. In this paper, a comprehensive recursive model for channel estimation and modeling of molecular single-input-multiple-output (SIMO) systems is proposed as a sufficiently accurate channel approximation method. With its recursive nature, the model is used to estimate the channel behavior of molecular SIMO systems. A simplified approximation model is also presented with reduced computational requirements, resulting in slightly less accurate channel estimation. Analytical expressions for both models are derived. The performance of the proposed methods are evaluated via topological analysis and error metrics, and the methods show promising results on channel estimation compared to computer-simulated data. Furthermore, the approximation matches quite well with the comprehensive model, which indicates significant success in terms of model performance.
In this paper, we investigate the secure rate-splitting for the two-user multiple-input multiple-output (MIMO) broadcast channel with imperfect channel state information at the transmitter (CSIT) and a multiple-antenna jammer, where each receiver has equal number of antennas and the jammer has perfect channel state information (CSI). Specifically, we design the secure rate-splitting multiple-access in this scenario, where the security of splitted private and common messages is ensured by precoder design with joint nulling and aligning the leakage information, regarding to different antenna configurations. As a result, we show that the sum-secure degrees-of-freedom (SDoF) achieved by secure rate-splitting outperforms that by conventional zero-forcing. Therefore, we validate the superiority of rate-splitting for the secure purpose in the two-user MIMO broadcast channel with imperfect CSIT and a jammer.
Accurate pressure drop estimation in forced boiling phenomena is important during the thermal analysis and the geometric design of cryogenic heat exchangers. However, current methods to predict the pressure drop have one of two problems: lack of accuracy or generalization to different situations. In this work, we present the correlated-informed neural networks (CoINN), a new paradigm in applying the artificial neural network (ANN) technique combined with a successful pressure drop correlation as a mapping tool to predict the pressure drop of zeotropic mixtures in micro-channels. The proposed approach is inspired by Transfer Learning, highly used in deep learning problems with reduced datasets. Our method improves the ANN performance by transferring the knowledge of the Sun & Mishima correlation for the pressure drop to the ANN. The correlation having physical and phenomenological implications for the pressure drop in micro-channels considerably improves the performance and generalization capabilities of the ANN. The final architecture consists of three inputs: the mixture vapor quality, the micro-channel inner diameter, and the available pressure drop correlation. The results show the benefits gained using the correlated-informed approach predicting experimental data used for training and a posterior test with a mean relative error (mre) of 6%, lower than the Sun & Mishima correlation of 13%. Additionally, this approach can be extended to other mixtures and experimental settings, a missing feature in other approaches for mapping correlations using ANNs for heat transfer applications.
As a parametric polynomial curve family, B\'ezier curves are widely used in safe and smooth motion design of intelligent robotic systems from flying drones to autonomous vehicles to robotic manipulators. In such motion planning settings, the critical features of high-order B\'ezier curves such as curve length, distance-to-collision, maximum curvature/velocity/acceleration are either numerically computed at a high computational cost or inexactly approximated by discrete samples. To address these issues, in this paper we present a novel computationally efficient approach for adaptive approximation of high-order B\'ezier curves by multiple low-order B\'ezier segments at any desired level of accuracy that is specified in terms of a B\'ezier metric. Accordingly, we introduce a new B\'ezier degree reduction method, called parameterwise matching reduction, that approximates B\'ezier curves more accurately compared to the standard least squares and Taylor reduction methods. We also propose a new B\'ezier metric, called the maximum control-point distance, that can be computed analytically, has a strong equivalence relation with other existing B\'ezier metrics, and defines a geometric relative bound between B\'ezier curves. We provide extensive numerical evidence to demonstrate the effectiveness of our proposed B\'ezier approximation approach. As a rule of thumb, based on the degree-one matching reduction error, we conclude that an $n^\text{th}$-order B\'ezier curve can be accurately approximated by $3(n-1)$ quadratic and $6(n-1)$ linear B\'ezier segments, which is fundamental for B\'ezier discretization.
The extreme or maximum age of information (AoI) is analytically studied for wireless communication systems. In particular, a wireless powered single-antenna source node and a receiver (connected to the power grid) equipped with multiple antennas are considered when operated under independent Rayleigh-faded channels. Via the extreme value theory and its corresponding statistical features, we demonstrate that the extreme AoI converges to the Gumbel distribution whereas its corresponding parameters are obtained in straightforward closed-form expressions. Capitalizing on this result, the risk of the extreme AoI realization is analytically evaluated according to some relevant performance metrics, while some useful engineering insights are manifested.
We consider online wireless network virtualization (WNV) in a multi-cell multiple-input multiple output (MIMO) system with delayed feedback of channel state information (CSI). Multiple service providers (SPs) simultaneously share the base station resources of an infrastructure provider (InP). We aim at minimizing the accumulated precoding deviation of the InP's actual precoder from the SPs' virtualization demands via managing both inter-SP and inter-cell interference, subject to both long-term and short-term per-cell transmit power constraints. We develop an online coordinated precoding solution and show that it provides provable performance bounds. Our precoding solution is fully distributed at each cell, based only on delayed local CSI. Furthermore, it has a closed-form expression with low computational complexity. Finally, simulation results demonstrate the substantial performance gain of our precoding solution over the current best alternative.
Extremely large-scale multiple-input-multiple-output (XL-MIMO) with hybrid precoding is a promising technique to meet the high data rate requirements for future 6G communications. To realize efficient hybrid precoding, it is essential to obtain accurate channel state information. Existing channel estimation algorithms with low pilot overhead heavily rely on the channel sparsity in the angle domain, which is achieved by the classical far-field planar wavefront assumption. However, due to the non-negligible near-field spherical wavefront property in XL-MIMO systems, this channel sparsity in the angle domain is not available anymore, and thus existing far-field channel estimation schemes will suffer from severe performance loss. To address this problem, in this paper we study the near-field channel estimation by exploiting the polar-domain sparse representation of the near-field XL-MIMO channel. Specifically, unlike the classical angle-domain representation that only considers the angle information of the channel, we propose a new polar-domain representation, which simultaneously accounts for both the angle and distance information. In this way, the near-field channel also exhibits sparsity in the polar domain. By exploiting the channel sparsity in the polar domain, we propose the on-grid and off-grid near-field channel estimation schemes for XL-MIMO. Firstly, an on-grid polar-domain simultaneous orthogonal matching pursuit (P-SOMP) algorithm is proposed to efficiently estimate the near-field channel. Furthermore, to solve the resolution limitation of the on-grid P-SOMP algorithm, an off-grid polar-domain simultaneous iterative gridless weighted (P-SIGW) algorithm is proposed to improve the estimation accuracy, where the parameters of the near-field channel are directly estimated. Finally, numerical results are provided to verify the effectiveness of the proposed schemes.
We propose a learning-based method for the joint design of a transmit and receive filter, the constellation geometry and associated bit labeling, as well as a neural network (NN)-based detector. The method maximizes an achievable information rate, while simultaneously satisfying constraints on the adjacent channel leakage ratio (ACLR) and peak-to-average power ratio (PAPR). This allows control of the tradeoff between spectral containment, peak power, and communication rate. Evaluation on an additive white Gaussian noise (AWGN) channel shows significant reduction of ACLR and PAPR compared to a conventional baseline relying on quadrature amplitude modulation (QAM) and root-raised-cosine (RRC), without significant loss of information rate. When considering a 3rd Generation Partnership Project (3GPP) multipath channel, the learned waveform and neural receiver enable competitive or higher rates than an orthogonal frequency division multiplexing (OFDM) baseline, while reducing the ACLR by 10 dB and the PAPR by 2 dB. The proposed method incurs no additional complexity on the transmitter side and might be an attractive tool for waveform design of beyond-5G systems.
In an aerial hybrid massive multiple-input multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM) system, how to design a spectral-efficient broadband multi-user hybrid beamforming with a limited pilot and feedback overhead is challenging. To this end, by modeling the key transmission modules as an end-to-end (E2E) neural network, this paper proposes a data-driven deep learning (DL)-based unified hybrid beamforming framework for both the time division duplex (TDD) and frequency division duplex (FDD) systems with implicit channel state information (CSI). For TDD systems, the proposed DL-based approach jointly models the uplink pilot combining and downlink hybrid beamforming modules as an E2E neural network. While for FDD systems, we jointly model the downlink pilot transmission, uplink CSI feedback, and downlink hybrid beamforming modules as an E2E neural network. Different from conventional approaches separately processing different modules, the proposed solution simultaneously optimizes all modules with the sum rate as the optimization object. Therefore, by perceiving the inherent property of air-to-ground massive MIMO-OFDM channel samples, the DL-based E2E neural network can establish the mapping function from the channel to the beamformer, so that the explicit channel reconstruction can be avoided with reduced pilot and feedback overhead. Besides, practical low-resolution phase shifters (PSs) introduce the quantization constraint, leading to the intractable gradient backpropagation when training the neural network. To mitigate the performance loss caused by the phase quantization error, we adopt the transfer learning strategy to further fine-tune the E2E neural network based on a pre-trained network that assumes the ideal infinite-resolution PSs. Numerical results show that our DL-based schemes have considerable advantages over state-of-the-art schemes.
The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.
Nowadays, recommender systems are present in many daily activities such as online shopping, browsing social networks, etc. Given the rising demand for reinvigoration of the tourist industry through information technology, recommenders have been included into tourism websites such as Expedia, Booking or Tripadvisor, among others. Furthermore, the amount of scientific papers related to recommender systems for tourism is on solid and continuous growth since 2004. Much of this growth is due to social networks that, besides to offer researchers the possibility of using a great mass of available and constantly updated data, they also enable the recommendation systems to become more personalised, effective and natural. This paper reviews and analyses many research publications focusing on tourism recommender systems that use social networks in their projects. We detail their main characteristics, like which social networks are exploited, which data is extracted, the applied recommendation techniques, the methods of evaluation, etc. Through a comprehensive literature review, we aim to collaborate with the future recommender systems, by giving some clear classifications and descriptions of the current tourism recommender systems.