亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

相關內容

Positive-unlabeled (PU) learning aims to train a classifier using the data containing only labeled-positive instances and unlabeled instances. However, existing PU learning methods are generally hard to achieve satisfactory performance on trifurcate data, where the positive instances distribute on both sides of the negative instances. To address this issue, firstly we propose a PU classifier with asymmetric loss (PUAL), by introducing a structure of asymmetric loss on positive instances into the objective function of the global and local learning classifier. Then we develop a kernel-based algorithm to enable PUAL to obtain non-linear decision boundary. We show that, through experiments on both simulated and real-world datasets, PUAL can achieve satisfactory classification on trifurcate data.

We study a fundamental transfer learning process from source to target linear regression tasks, including overparameterized settings where there are more learned parameters than data samples. The target task learning is addressed by using its training data together with the parameters previously computed for the source task. We define a transfer learning approach to the target task as a linear regression optimization with a regularization on the distance between the to-be-learned target parameters and the already-learned source parameters. We analytically characterize the generalization performance of our transfer learning approach and demonstrate its ability to resolve the peak in generalization errors in double descent phenomena of the minimum L2-norm solution to linear regression. Moreover, we show that for sufficiently related tasks, the optimally tuned transfer learning approach can outperform the optimally tuned ridge regression method, even when the true parameter vector conforms to an isotropic Gaussian prior distribution. Namely, we demonstrate that transfer learning can beat the minimum mean square error (MMSE) solution of the independent target task. Our results emphasize the ability of transfer learning to extend the solution space to the target task and, by that, to have an improved MMSE solution. We formulate the linear MMSE solution to our transfer learning setting and point out its key differences from the common design philosophy to transfer learning.

Cross-Domain Sequential Recommendation (CDSR) methods aim to address the data sparsity and cold-start problems present in Single-Domain Sequential Recommendation (SDSR). Existing CDSR methods typically rely on overlapping users, designing complex cross-domain modules to capture users' latent interests that can propagate across different domains. However, their propagated informative information is limited to the overlapping users and the users who have rich historical behavior records. As a result, these methods often underperform in real-world scenarios, where most users are non-overlapping (cold-start) and long-tailed. In this research, we introduce a new CDSR framework named Information Maximization Variational Autoencoder (\textbf{\texttt{IM-VAE}}). Here, we suggest using a Pseudo-Sequence Generator to enhance the user's interaction history input for downstream fine-grained CDSR models to alleviate the cold-start issues. We also propose a Generative Recommendation Framework combined with three regularizers inspired by the mutual information maximization (MIM) theory \cite{mcgill1954multivariate} to capture the semantic differences between a user's interests shared across domains and those specific to certain domains, as well as address the informational gap between a user's actual interaction sequences and the pseudo-sequences generated. To the best of our knowledge, this paper is the first CDSR work that considers the information disentanglement and denoising of pseudo-sequences in the open-world recommendation scenario. Empirical experiments illustrate that \texttt{IM-VAE} outperforms the state-of-the-art approaches on two real-world cross-domain datasets on all sorts of users, including cold-start and tailed users, demonstrating the effectiveness of \texttt{IM-VAE} in open-world recommendation.

We study reinforcement learning with multinomial logistic (MNL) function approximation where the underlying transition probability kernel of the Markov decision processes (MDPs) is parametrized by an unknown transition core with features of state and action. For the finite horizon episodic setting with inhomogeneous state transitions, we propose provably efficient algorithms with randomized exploration having frequentist regret guarantees. For our first algorithm, $\texttt{RRL-MNL}$, we adapt optimistic sampling to ensure the optimism of the estimated value function with sufficient frequency and establish that $\texttt{RRL-MNL}$ is both statistically and computationally efficient, achieving a $\tilde{O}(\kappa^{-1} d^{\frac{3}{2}} H^{\frac{3}{2}} \sqrt{T})$ frequentist regret bound with constant-time computational cost per episode. Here, $d$ is the dimension of the transition core, $H$ is the horizon length, $T$ is the total number of steps, and $\kappa$ is a problem-dependent constant. Despite the simplicity and practicality of $\texttt{RRL-MNL}$, its regret bound scales with $\kappa^{-1}$, which is potentially large in the worst case. To improve the dependence on $\kappa^{-1}$, we propose $\texttt{ORRL-MNL}$, which estimates the value function using local gradient information of the MNL transition model. We show that its frequentist regret bound is $\tilde{O}(d^{\frac{3}{2}} H^{\frac{3}{2}} \sqrt{T} + \kappa^{-1} d^2 H^2)$. To the best of our knowledge, these are the first randomized RL algorithms for the MNL transition model that achieve both computational and statistical efficiency. Numerical experiments demonstrate the superior performance of the proposed algorithms.

We develop a Mean-Field (MF) view of the learning dynamics of overparametrized Artificial Neural Networks (NN) under data symmetric in law wrt the action of a general compact group $G$. We consider for this a class of generalized shallow NNs given by an ensemble of $N$ multi-layer units, jointly trained using stochastic gradient descent (SGD) and possibly symmetry-leveraging (SL) techniques, such as Data Augmentation (DA), Feature Averaging (FA) or Equivariant Architectures (EA). We introduce the notions of weakly and strongly invariant laws (WI and SI) on the parameter space of each single unit, corresponding, respectively, to $G$-invariant distributions, and to distributions supported on parameters fixed by the group action (which encode EA). This allows us to define symmetric models compatible with taking $N\to\infty$ and give an interpretation of the asymptotic dynamics of DA, FA and EA in terms of Wasserstein Gradient Flows describing their MF limits. When activations respect the group action, we show that, for symmetric data, DA, FA and freely-trained models obey the exact same MF dynamic, which stays in the space of WI laws and minimizes therein the population risk. We also give a counterexample to the general attainability of an optimum over SI laws. Despite this, quite remarkably, we show that the set of SI laws is also preserved by the MF dynamics even when freely trained. This sharply contrasts the finite-$N$ setting, in which EAs are generally not preserved by unconstrained SGD. We illustrate the validity of our findings as $N$ gets larger in a teacher-student experimental setting, training a student NN to learn from a WI, SI or arbitrary teacher model through various SL schemes. We last deduce a data-driven heuristic to discover the largest subspace of parameters supporting SI distributions for a problem, that could be used for designing EA with minimal generalization error.

High-Level Synthesis (HLS) has transformed the development of complex Hardware IPs (HWIP) by offering abstraction and configurability through languages like SystemC/C++, particularly for Field Programmable Gate Array (FPGA) accelerators in high-performance and cloud computing contexts. These IPs can be synthesized for different FPGA boards in cloud, offering compact area requirements and enhanced flexibility. HLS enables designs to execute directly on ARM processors within modern FPGAs without the need for Register Transfer Level (RTL) synthesis, thereby conserving FPGA resources. While HLS offers flexibility and efficiency, it also introduces potential vulnerabilities such as the presence of hidden circuitry, including the possibility of hosting hardware trojans within designs. In cloud environments, these vulnerabilities pose significant security concerns such as leakage of sensitive data, IP functionality disruption and hardware damage, necessitating the development of robust testing frameworks. This research presents an advanced testing approach for HLS-developed cloud IPs, specifically targeting hidden malicious functionalities that may exist in rare conditions within the design. The proposed method leverages selective instrumentation, combining greybox fuzzing and concolic execution techniques to enhance test generation capabilities. Evaluation conducted on various HLS benchmarks, possessing characteristics of FPGA-based cloud IPs with embedded cloud related threats, demonstrates the effectiveness of our framework in detecting trojans and rare scenarios, showcasing improvements in coverage, time efficiency, memory usage, and testing costs compared to existing methods.

In offline reinforcement learning, the challenge of out-of-distribution (OOD) is pronounced. To address this, existing methods often constrain the learned policy through policy regularization. However, these methods often suffer from the issue of unnecessary conservativeness, hampering policy improvement. This occurs due to the indiscriminate use of all actions from the behavior policy that generates the offline dataset as constraints. The problem becomes particularly noticeable when the quality of the dataset is suboptimal. Thus, we propose Adaptive Advantage-guided Policy Regularization (A2PR), obtaining high-advantage actions from an augmented behavior policy combined with VAE to guide the learned policy. A2PR can select high-advantage actions that differ from those present in the dataset, while still effectively maintaining conservatism from OOD actions. This is achieved by harnessing the VAE capacity to generate samples matching the distribution of the data points. We theoretically prove that the improvement of the behavior policy is guaranteed. Besides, it effectively mitigates value overestimation with a bounded performance gap. Empirically, we conduct a series of experiments on the D4RL benchmark, where A2PR demonstrates state-of-the-art performance. Furthermore, experimental results on additional suboptimal mixed datasets reveal that A2PR exhibits superior performance. Code is available at //github.com/ltlhuuu/A2PR.

Recent strides in large language models (LLMs) have yielded remarkable performance, leveraging reinforcement learning from human feedback (RLHF) to significantly enhance generation and alignment capabilities. However, RLHF encounters numerous challenges, including the objective mismatch issue, leading to suboptimal performance in Natural Language Understanding (NLU) tasks. To address this limitation, we propose a novel Reinforcement Learning framework enhanced with Label-sensitive Reward (RLLR) to amplify the performance of LLMs in NLU tasks. By incorporating label-sensitive pairs into reinforcement learning, our method aims to adeptly capture nuanced label-sensitive semantic features during RL, thereby enhancing natural language understanding. Experiments conducted on five diverse foundation models across eight tasks showcase promising results. In comparison to Supervised Fine-tuning models (SFT), RLLR demonstrates an average performance improvement of 1.54%. Compared with RLHF models, the improvement averages at 0.69%. These results reveal the effectiveness of our method for LLMs in NLU tasks. Code and data available at: //github.com/MagiaSN/ACL2024_RLLR.

Continual learning with deep neural networks presents challenges distinct from both the fixed-dataset and convex continual learning regimes. One such challenge is plasticity loss, wherein a neural network trained in an online fashion displays a degraded ability to fit new tasks. This problem has been extensively studied in both supervised learning and off-policy reinforcement learning (RL), where a number of remedies have been proposed. Still, plasticity loss has received less attention in the on-policy deep RL setting. Here we perform an extensive set of experiments examining plasticity loss and a variety of mitigation methods in on-policy deep RL. We demonstrate that plasticity loss is pervasive under domain shift in this regime, and that a number of methods developed to resolve it in other settings fail, sometimes even resulting in performance that is worse than performing no intervention at all. In contrast, we find that a class of ``regenerative'' methods are able to consistently mitigate plasticity loss in a variety of contexts, including in gridworld tasks and more challenging environments like Montezuma's Revenge and ProcGen.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

北京阿比特科技有限公司