亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Wireless Network-on-Chip (WNoC) is a promising concept which provides a solution to overcome the scalability issues in prevailing networks-in-package for many-core processors. However, the electromagnetic propagation inside the chip package leads to energy reverberation, resulting in Inter-Symbol Interference (ISI) with high delay spreads. Time Reversal (TR) is a technique that benefits the unique time-invariant channel with rich multipath effects to focus the energy to the desired transceiver. TR mitigates both ISI and co-channel interference, hence providing parallel communications in both space and time. Thus, TR is a versatile candidate to improve the aggregate bandwidth of wireless on-chip networks provided that a Medium Access Control (MAC) is used to efficiently share the wireless medium. In this paper, we explore a simple yet resilient TR-based MAC protocol (TR-MAC) design for WNoC. We propose to manage multiple parallel transmissions with simultaneous spatial channels in the same time slot with TR precoding and focused energy detection at the transceiver. Our results show that TR-MAC can be employed in massive computing architectures with improved latency and throughput while matching with the stringent requirements of the physical layer.

相關內容

TR:IEEE Transactions on Robotics Explanation: Publisher:IEEE。 SIT:

Large Language Models (LLMs) have demonstrated remarkable abilities in various language tasks, making them promising candidates for decision-making in robotics. Inspired by Hierarchical Reinforcement Learning (HRL), we propose Retrieval-Augmented in-context reinforcement Learning (RAHL), a novel framework that decomposes complex tasks into sub-tasks using an LLM-based high-level policy, in which a complex task is decomposed into sub-tasks by a high-level policy on-the-fly. The sub-tasks, defined by goals, are assigned to the low-level policy to complete. To improve the agent's performance in multi-episode execution, we propose Hindsight Modular Reflection (HMR), where, instead of reflecting on the full trajectory, we let the agent reflect on shorter sub-trajectories to improve reflection efficiency. We evaluated the decision-making ability of the proposed RAHL in three benchmark environments--ALFWorld, Webshop, and HotpotQA. The results show that RAHL can achieve an improvement in performance in 9%, 42%, and 10% in 5 episodes of execution in strong baselines. Furthermore, we also implemented RAHL on the Boston Dynamics SPOT robot. The experiment shows that the robot can scan the environment, find entrances, and navigate to new rooms controlled by the LLM policy.

Comprehensive evaluation of Large Language Models (LLMs) is an open research problem. Existing evaluations rely on deterministic point estimates generated via greedy decoding. However, we find that deterministic evaluations fail to capture the whole output distribution of a model, yielding inaccurate estimations of model capabilities. This is particularly problematic in critical contexts such as unlearning and alignment, where precise model evaluations are crucial. To remedy this, we introduce the first formal probabilistic evaluation framework in LLMs. Namely, we derive novel metrics with high-probability guarantees concerning the output distribution of a model. Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment. Through a case study focused on unlearning, we reveal that deterministic evaluations falsely indicate successful unlearning, whereas our probabilistic evaluations demonstrate that most if not all of the supposedly unlearned information remains accessible in these models. Additionally, we propose a novel unlearning loss based on entropy optimization and adaptive temperature scaling, which significantly improves unlearning in probabilistic settings on recent benchmarks. Our proposed shift from point estimates to probabilistic evaluations of output distributions represents an important step toward comprehensive evaluations of LLMs. //github.com/yascho/probabilistic-unlearning

Most learning algorithms with formal regret guarantees assume that no mistake is irreparable and essentially rely on trying all possible behaviors. This approach is problematic when some mistakes are \emph{catastrophic}, i.e., irreparable. We propose an online learning problem where the goal is to minimize the chance of catastrophe. Specifically, we assume that the payoff in each round represents the chance of avoiding catastrophe that round and aim to maximize the product of payoffs (the overall chance of avoiding catastrophe) while allowing a limited number of queries to a mentor. We first show that in general, any algorithm either constantly queries the mentor or is nearly guaranteed to cause catastrophe. However, in settings where the mentor policy class is learnable in the standard online learning model, we provide an algorithm whose regret and rate of querying the mentor both approach 0 as the time horizon grows. Conceptually, if a policy class is learnable in the absence of catastrophic risk, it is learnable in the presence of catastrophic risk if the agent can ask for help.

The two-alternative forced choice (2AFC) experimental method is popular in the visual perception literature, where practitioners aim to understand how human observers perceive distances within triplets made of a reference image and two distorted versions. In the past, this had been conducted in controlled environments, with triplets sharing images, so it was possible to rank the perceived quality. This ranking would then be used to evaluate perceptual distance models against the experimental data. Recently, crowd-sourced perceptual datasets have emerged, with no images shared between triplets, making ranking infeasible. Evaluating perceptual distance models using this data reduces the judgements on a triplet to a binary decision, namely, whether the distance model agrees with the human decision - which is suboptimal and prone to misleading conclusions. Instead, we statistically model the underlying decision-making process during 2AFC experiments using a binomial distribution. Having enough empirical data, we estimate a smooth and consistent distribution of the judgements on the reference-distorted distance plane, according to each distance model. By applying maximum likelihood, we estimate the parameter of the local binomial distribution, and a global measurement of the expected log-likelihood of the measured responses. We calculate meaningful and well-founded metrics for the distance model, beyond the mere prediction accuracy as percentage agreement, even with variable numbers of judgements per triplet -- key advantages over both classical and neural network methods.

The expected improvement (EI) is one of the most popular acquisition functions for Bayesian optimization (BO) and has demonstrated good empirical performances in many applications for the minimization of simple regret. However, under the evaluation metric of cumulative regret, the performance of EI may not be competitive, and its existing theoretical regret upper bound still has room for improvement. To adapt the EI for better performance under cumulative regret, we introduce a novel quantity called the evaluation cost which is compared against the acquisition function, and with this, develop the expected improvement-cost (EIC) algorithm. In each iteration of EIC, a new point with the largest acquisition function value is sampled, only if that value exceeds its evaluation cost. If none meets this criteria, the current best point is resampled. This evaluation cost quantifies the potential downside of sampling a point, which is important under the cumulative regret metric as the objective function value in every iteration affects the performance measure. We establish in theory a high-probability regret upper bound of EIC based on the maximum information gain, which is tighter than the bound of existing EI-based algorithms. It is also comparable to the regret bound of other popular BO algorithms such as Thompson sampling (GP-TS) and upper confidence bound (GP-UCB). We further perform experiments to illustrate the improvement of EIC over several popular BO algorithms.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

北京阿比特科技有限公司