亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multidimensional constellation shaping of up to 32 dimensions with different spectral efficiencies are compared through AWGN and fiber-optic simulations. The results show that no constellation is universal and the balance of required and effective SNRs should be jointly considered for the specific optical transmission scenario.

相關內容

Deep Learning(DL) and Machine Learning(ML) applications are rapidly increasing in recent days. Massive amounts of data are being generated over the internet which can derive meaningful results by the use of ML and DL algorithms. Hardware resources and open-source libraries have made it easy to implement these algorithms. Tensorflow and Pytorch are one of the leading frameworks for implementing ML projects. By using those frameworks, we can trace the operations executed on both GPU and CPU to analyze the resource allocations and consumption. This paper presents the time and memory allocation of CPU and GPU while training deep neural networks using Pytorch. This paper analysis shows that GPU has a lower running time as compared to CPU for deep neural networks. For a simpler network, there are not many significant improvements in GPU over the CPU.

Extraterrestrial autonomous lander missions increasingly demand adaptive capabilities to handle the unpredictable and diverse nature of the terrain. This paper discusses the deployment of a Deep Meta-Learning with Controlled Deployment Gaps (CoDeGa) trained model for terrain scooping tasks in Ocean Worlds Lander Autonomy Testbed (OWLAT) at NASA Jet Propulsion Laboratory. The CoDeGa-powered scooping strategy is designed to adapt to novel terrains, selecting scooping actions based on the available RGB-D image data and limited experience. The paper presents our experiences with transferring the scooping framework with CoDeGa-trained model from a low-fidelity testbed to the high-fidelity OWLAT testbed. Additionally, it validates the method's performance in novel, realistic environments, and shares the lessons learned from deploying learning-based autonomy algorithms for space exploration. Experimental results from OWLAT substantiate the efficacy of CoDeGa in rapidly adapting to unfamiliar terrains and effectively making autonomous decisions under considerable domain shifts, thereby endorsing its potential utility in future extraterrestrial missions.

Visual question answering (VQA) is a fundamental and essential AI task, and VQA-based disaster scenario understanding is a hot research topic. For instance, we can ask questions about a disaster image by the VQA model and the answer can help identify whether anyone or anything is affected by the disaster. However, previous VQA models for disaster damage assessment have some shortcomings, such as limited candidate answer space, monotonous question types, and limited answering capability of existing models. In this paper, we propose a zero-shot VQA model named Zero-shot VQA for Flood Disaster Damage Assessment (ZFDDA). It is a VQA model for damage assessment without pre-training. Also, with flood disaster as the main research object, we build a Freestyle Flood Disaster Image Question Answering dataset (FFD-IQA) to evaluate our VQA model. This new dataset expands the question types to include free-form, multiple-choice, and yes-no questions. At the same time, we expand the size of the previous dataset to contain a total of 2,058 images and 22,422 question-meta ground truth pairs. Most importantly, our model uses well-designed chain of thought (CoT) demonstrations to unlock the potential of the large language model, allowing zero-shot VQA to show better performance in disaster scenarios. The experimental results show that the accuracy in answering complex questions is greatly improved with CoT prompts. Our study provides a research basis for subsequent research of VQA for other disaster scenarios.

Dialogue state tracking plays a crucial role in extracting information in task-oriented dialogue systems. However, preceding research are limited to textual modalities, primarily due to the shortage of authentic human audio datasets. We address this by investigating synthetic audio data for audio-based DST. To this end, we develop cascading and end-to-end models, train them with our synthetic audio dataset, and test them on actual human speech data. To facilitate evaluation tailored to audio modalities, we introduce a novel PhonemeF1 to capture pronunciation similarity. Experimental results showed that models trained solely on synthetic datasets can generalize their performance to human voice data. By eliminating the dependency on human speech data collection, these insights pave the way for significant practical advancements in audio-based DST. Data and code are available at //github.com/JihyunLee1/E2E-DST.

Humans possess a remarkable ability to integrate auditory and visual information, enabling a deeper understanding of the surrounding environment. This early fusion of audio and visual cues, demonstrated through cognitive psychology and neuroscience research, offers promising potential for developing multimodal perception models. However, training early fusion architectures poses significant challenges, as the increased model expressivity requires robust learning frameworks to harness their enhanced capabilities. In this paper, we address this challenge by leveraging the masked reconstruction framework, previously successful in unimodal settings, to train audio-visual encoders with early fusion. Additionally, we propose an attention-based fusion module that captures interactions between local audio and visual representations, enhancing the model's ability to capture fine-grained interactions. While effective, this procedure can become computationally intractable, as the number of local representations increases. Thus, to address the computational complexity, we propose an alternative procedure that factorizes the local representations before representing audio-visual interactions. Extensive evaluations on a variety of datasets demonstrate the superiority of our approach in audio-event classification, visual sound localization, sound separation, and audio-visual segmentation. These contributions enable the efficient training of deeply integrated audio-visual models and significantly advance the usefulness of early fusion architectures.

As discussions around 6G begin, it is important to carefully quantify the spectral efficiency gains actually realized by deployed 5G networks as compared to 4G through various enhancements such as higher modulation, beamforming, and MIMO. This will inform the design of future cellular systems, especially in the mid-bands, which provide a good balance between bandwidth and propagation. Similar to 4G, 5G also utilizes low-band (<1 GHz) and mid-band spectrum (1 to 6 GHz), and hence comparing the performance of 4G and 5G in these bands will provide insights into how further improvements can be attained. In this work, we address a crucial question: is the performance boost in 5G compared to 4G primarily a result of increased bandwidth, or do the other enhancements play significant roles, and if so, under what circumstances? Hence, we conduct city-wide measurements of 4G and 5G cellular networks deployed in low- and mid-bands in Chicago and Minneapolis, and carefully quantify the contributions of different aspects of 5G advancements to its improved throughput performance. Our analyses show that (i) compared to 4G, the throughput improvement in 5G today is mainly influenced by the wider channel bandwidth, both from single channels and channel aggregation, (ii) in addition to wider channels, improved 5G throughput requires better signal conditions, which can be delivered by denser deployment and/or use of beamforming in mid-bands, (iii) the channel rank in real-world environments rarely supports the full 4 layers of 4x4 MIMO and (iv) advanced features such as MU-MIMO and higher order modulation such as 1024-QAM have yet to be widely deployed. These observations and conclusions lead one to consider designing the next generation of cellular systems to have wider channels, perhaps with improved channel aggregation, dense deployment with more beams.

Modeling the ratio of two dependent components as a function of covariates is a frequently pursued objective in observational research. Despite the high relevance of this topic in medical studies, where biomarker ratios are often used as surrogate endpoints for specific diseases, existing models are based on oversimplified assumptions, assuming e.g.\@ independence or strictly positive associations between the components. In this paper, we close this gap in the literature and propose a regression model where the marginal distributions of the two components are linked by Frank copula. A key feature of our model is that it allows for both positive and negative correlations between the components, with one of the model parameters being directly interpretable in terms of Kendall's rank correlation coefficient. We study our method theoretically, evaluate finite sample properties in a simulation study and demonstrate its efficacy in an application to diagnosis of Alzheimer's disease via ratios of amyloid-beta and total tau protein biomarkers.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司