This paper introduces the Budding Ensemble Architecture (BEA), a novel reduced ensemble architecture for anchor-based object detection models. Object detection models are crucial in vision-based tasks, particularly in autonomous systems. They should provide precise bounding box detections while also calibrating their predicted confidence scores, leading to higher-quality uncertainty estimates. However, current models may make erroneous decisions due to false positives receiving high scores or true positives being discarded due to low scores. BEA aims to address these issues. The proposed loss functions in BEA improve the confidence score calibration and lower the uncertainty error, which results in a better distinction of true and false positives and, eventually, higher accuracy of the object detection models. Both Base-YOLOv3 and SSD models were enhanced using the BEA method and its proposed loss functions. The BEA on Base-YOLOv3 trained on the KITTI dataset results in a 6% and 3.7% increase in mAP and AP50, respectively. Utilizing a well-balanced uncertainty estimation threshold to discard samples in real-time even leads to a 9.6% higher AP50 than its base model. This is attributed to a 40% increase in the area under the AP50-based retention curve used to measure the quality of calibration of confidence scores. Furthermore, BEA-YOLOV3 trained on KITTI provides superior out-of-distribution detection on Citypersons, BDD100K, and COCO datasets compared to the ensembles and vanilla models of YOLOv3 and Gaussian-YOLOv3.
This paper examines the current state-of-the-art of German text simplification, focusing on parallel and monolingual German corpora. It reviews neural language models for simplifying German texts and assesses their suitability for legal texts and accessibility requirements. Our findings highlight the need for additional training data and more appropriate approaches that consider the specific linguistic characteristics of German, as well as the importance of the needs and preferences of target groups with cognitive or language impairments. The authors launched the interdisciplinary OPEN-LS project in April 2023 to address these research gaps. The project aims to develop a framework for text formats tailored to individuals with low literacy levels, integrate legal texts, and enhance comprehensibility for those with linguistic or cognitive impairments. It will also explore cost-effective ways to enhance the data with audience-specific illustrations using image-generating AI. For more and up-to-date information, please visit our project homepage //open-ls.entavis.com
We introduce RANRAC, a robust reconstruction algorithm for 3D objects handling occluded and distracted images, which is a particularly challenging scenario that prior robust reconstruction methods cannot deal with. Our solution supports single-shot reconstruction by involving light-field networks, and is also applicable to photo-realistic, robust, multi-view reconstruction from real-world images based on neural radiance fields. While the algorithm imposes certain limitations on the scene representation and, thereby, the supported scene types, it reliably detects and excludes inconsistent perspectives, resulting in clean images without floating artifacts. Our solution is based on a fuzzy adaption of the random sample consensus paradigm, enabling its application to large scale models. We interpret the minimal number of samples to determine the model parameters as a tunable hyperparameter. This is applicable, as a cleaner set of samples improves reconstruction quality. Further, this procedure also handles outliers. Especially for conditioned models, it can result in the same local minimum in the latent space as would be obtained with a completely clean set. We report significant improvements for novel-view synthesis in occluded scenarios, of up to 8dB PSNR compared to the baseline.
Video-grounded Dialogue (VGD) aims to answer questions regarding a given multi-modal input comprising video, audio, and dialogue history. Although there have been numerous efforts in developing VGD systems to improve the quality of their responses, existing systems are competent only to incorporate the information in the video and text and tend to struggle in extracting the necessary information from the audio when generating appropriate responses to the question. The VGD system seems to be deaf, and thus, we coin this symptom of current systems' ignoring audio data as a deaf response. To overcome the deaf response problem, Hearing Enhanced Audio Response (HEAR) framework is proposed to perform sensible listening by selectively attending to audio whenever the question requires it. The HEAR framework enhances the accuracy and audibility of VGD systems in a model-agnostic manner. HEAR is validated on VGD datasets (i.e., AVSD@DSTC7 and AVSD@DSTC8) and shows effectiveness with various VGD systems.
This paper provides a novel parsimonious yet efficient design for zero-shot learning (ZSL), dubbed ParsNets, where we are interested in learning a composition of on-device friendly linear networks, each with orthogonality and low-rankness properties, to achieve equivalent or even better performance against existing deep models. Concretely, we first refactor the core module of ZSL, i.e., visual-semantics mapping function, into several base linear networks that correspond to diverse components of the semantic space, where the complex nonlinearity can be collapsed into simple local linearities. Then, to facilitate the generalization of local linearities, we construct a maximal margin geometry on the learned features by enforcing low-rank constraints on intra-class samples and high-rank constraints on inter-class samples, resulting in orthogonal subspaces for different classes and each subspace lies on a compact manifold. To enhance the model's adaptability and counterbalance over/under-fittings in ZSL, a set of sample-wise indicators is employed to select a sparse subset from these base linear networks to form a composite semantic predictor for each sample. Notably, maximal margin geometry can guarantee the diversity of features, and meanwhile, local linearities guarantee efficiency. Thus, our ParsNets can generalize better to unseen classes and can be deployed flexibly on resource-constrained devices. Theoretical explanations and extensive experiments are conducted to verify the effectiveness of the proposed method.
Riveter provides a complete easy-to-use pipeline for analyzing verb connotations associated with entities in text corpora. We prepopulate the package with connotation frames of sentiment, power, and agency, which have demonstrated usefulness for capturing social phenomena, such as gender bias, in a broad range of corpora. For decades, lexical frameworks have been foundational tools in computational social science, digital humanities, and natural language processing, facilitating multifaceted analysis of text corpora. But working with verb-centric lexica specifically requires natural language processing skills, reducing their accessibility to other researchers. By organizing the language processing pipeline, providing complete lexicon scores and visualizations for all entities in a corpus, and providing functionality for users to target specific research questions, Riveter greatly improves the accessibility of verb lexica and can facilitate a broad range of future research.
We extend our previous work on Inductive Conformal Prediction (ICP) for multi-label text classification and present a novel approach for addressing the computational inefficiency of the Label Powerset (LP) ICP, arrising when dealing with a high number of unique labels. We present experimental results using the original and the proposed efficient LP-ICP on two English and one Czech language data-sets. Specifically, we apply the LP-ICP on three deep Artificial Neural Network (ANN) classifiers of two types: one based on contextualised (bert) and two on non-contextualised (word2vec) word-embeddings. In the LP-ICP setting we assign nonconformity scores to label-sets from which the corresponding p-values and prediction-sets are determined. Our approach deals with the increased computational burden of LP by eliminating from consideration a significant number of label-sets that will surely have p-values below the specified significance level. This reduces dramatically the computational complexity of the approach while fully respecting the standard CP guarantees. Our experimental results show that the contextualised-based classifier surpasses the non-contextualised-based ones and obtains state-of-the-art performance for all data-sets examined. The good performance of the underlying classifiers is carried on to their ICP counterparts without any significant accuracy loss, but with the added benefits of ICP, i.e. the confidence information encapsulated in the prediction sets. We experimentally demonstrate that the resulting prediction sets can be tight enough to be practically useful even though the set of all possible label-sets contains more than $1e+16$ combinations. Additionally, the empirical error rates of the obtained prediction-sets confirm that our outputs are well-calibrated.
We propose a novel feed-forward 3D editing framework called Shap-Editor. Prior research on editing 3D objects primarily concentrated on editing individual objects by leveraging off-the-shelf 2D image editing networks. This is achieved via a process called distillation, which transfers knowledge from the 2D network to 3D assets. Distillation necessitates at least tens of minutes per asset to attain satisfactory editing results, and is thus not very practical. In contrast, we ask whether 3D editing can be carried out directly by a feed-forward network, eschewing test-time optimisation. In particular, we hypothesise that editing can be greatly simplified by first encoding 3D objects in a suitable latent space. We validate this hypothesis by building upon the latent space of Shap-E. We demonstrate that direct 3D editing in this space is possible and efficient by building a feed-forward editor network that only requires approximately one second per edit. Our experiments show that Shap-Editor generalises well to both in-distribution and out-of-distribution 3D assets with different prompts, exhibiting comparable performance with methods that carry out test-time optimisation for each edited instance.
This paper introduces a novel approach to enhance the capabilities of Large Language Models (LLMs) in processing and understanding extensive text sequences, a critical aspect in applications requiring deep comprehension and synthesis of large volumes of information. Recognizing the inherent challenges in extending the context window for LLMs, primarily built on Transformer architecture, we propose a new model architecture, referred to as Zebra. This architecture efficiently manages the quadratic time and memory complexity issues associated with full attention in the Transformer by employing grouped local-global attention layers. Our model, akin to a zebra's alternating stripes, balances local and global attention layers, significantly reducing computational requirements and memory consumption. Comprehensive experiments, including pretraining from scratch, continuation of long context adaptation training, and long instruction tuning, are conducted to evaluate the Zebra's performance. The results show that Zebra achieves comparable or superior performance on both short and long sequence benchmarks, while also enhancing training and inference efficiency.
We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.
We propose a novel two-layered attention network based on Bidirectional Long Short-Term Memory for sentiment analysis. The novel two-layered attention network takes advantage of the external knowledge bases to improve the sentiment prediction. It uses the Knowledge Graph Embedding generated using the WordNet. We build our model by combining the two-layered attention network with the supervised model based on Support Vector Regression using a Multilayer Perceptron network for sentiment analysis. We evaluate our model on the benchmark dataset of SemEval 2017 Task 5. Experimental results show that the proposed model surpasses the top system of SemEval 2017 Task 5. The model performs significantly better by improving the state-of-the-art system at SemEval 2017 Task 5 by 1.7 and 3.7 points for sub-tracks 1 and 2 respectively.