In this paper, we address the node repair problem of Reed-Solomon (RS) coded distributed storage systems. Specifically, to overcome the challenges of multiple-node failures of RS codes under the rack-aware storage model, we employ good polynomials to guide the placement of the conventional RS codes into racks and then propose a novel repair framework for the resultant rack-aware RS codes, which can transform its repair to that under the homogeneous storage model. As applications of our repair framework, firstly we present the repair scheme of multiple-node failures for some existing constructions, which can only repair a single-node failure before. Secondly, we deduce several new constructions of rack-aware RS codes supporting the repair of multiple-node failures.
In a recent paper, Ling et al. investigated the over-parametrized Deep Equilibrium Model (DEQ) with ReLU activation. They proved that the gradient descent converges to a globally optimal solution for the quadratic loss function at a linear convergence rate. This paper shows that this fact still holds for DEQs with any generally bounded activation with bounded first and second derivatives. Since the new activation function is generally non-homogeneous, bounding the least eigenvalue of the Gram matrix of the equilibrium point is particularly challenging. To accomplish this task, we must create a novel population Gram matrix and develop a new form of dual activation with Hermite polynomial expansion.
Recent advances in LLMs have sparked a debate on whether they understand text. In this position paper, we argue that opponents in this debate hold different definitions for understanding, and particularly differ in their view on the role of consciousness. To substantiate this claim, we propose a thought experiment involving an open-source chatbot $Z$ which excels on every possible benchmark, seemingly without subjective experience. We ask whether $Z$ is capable of understanding, and show that different schools of thought within seminal AI research seem to answer this question differently, uncovering their terminological disagreement. Moving forward, we propose two distinct working definitions for understanding which explicitly acknowledge the question of consciousness, and draw connections with a rich literature in philosophy, psychology and neuroscience.
In this paper, we revisit the Power Curves in ANOVA Simultaneous Component Analysis (ASCA) based on permutation testing, and introduce the Population Curves derived from population parameters describing the relative effect among factors and interactions. We distinguish Relative from Absolute Population Curves, where the former represent statistical power in terms of the normalized effect size between structure and noise, and the latter in terms of the sample size. Relative Population Curves are useful to find the optimal ASCA model (e.g., fixed/random factors, crossed/nested relationships, interactions, the test statistic, transformations, etc.) for the analysis of an experimental design at hand. Absolute Population Curves are useful to determine the sample size and the optimal number of levels for each factor during the planning phase on an experiment. We illustrate both types of curves through simulation. We expect Population Curves to become the go-to approach to plan the optimal analysis pipeline and the required sample size in an omics study analyzed with ASCA.
In this paper, we propose a deep learning based model for Acoustic Anomaly Detection of Machines, the task for detecting abnormal machines by analysing the machine sound. By conducting extensive experiments, we indicate that multiple techniques of pseudo audios, audio segment, data augmentation, Mahalanobis distance, and narrow frequency bands, which mainly focus on feature engineering, are effective to enhance the system performance. Among the evaluating techniques, the narrow frequency bands presents a significant impact. Indeed, our proposed model, which focuses on the narrow frequency bands, outperforms the DCASE baseline on the benchmark dataset of DCASE 2022 Task 2 Development set. The important role of the narrow frequency bands indicated in this paper inspires the research community on the task of Acoustic Anomaly Detection of Machines to further investigate and propose novel network architectures focusing on the frequency bands.
While Neural Networks (NNs) have surpassed human accuracy in image classification on ImageNet, they often lack robustness against image corruption, i.e., corruption robustness. Yet such robustness is seemingly effortless for human perception. In this paper, we propose visually-continuous corruption robustness (VCR) -- an extension of corruption robustness to allow assessing it over the wide and continuous range of changes that correspond to the human perceptive quality (i.e., from the original image to the full distortion of all perceived visual information), along with two novel human-aware metrics for NN evaluation. To compare VCR of NNs with human perception, we conducted extensive experiments on 14 commonly used image corruptions with 7,718 human participants and state-of-the-art robust NN models with different training objectives (e.g., standard, adversarial, corruption robustness), different architectures (e.g., convolution NNs, vision transformers), and different amounts of training data augmentation. Our study showed that: 1) assessing robustness against continuous corruption can reveal insufficient robustness undetected by existing benchmarks; as a result, 2) the gap between NN and human robustness is larger than previously known; and finally, 3) some image corruptions have a similar impact on human perception, offering opportunities for more cost-effective robustness assessments. Our validation set with 14 image corruptions, human robustness data, and the evaluation code is provided as a toolbox and a benchmark.
In this paper, we consider the generation and utilization of helper data for physical unclonable functions (PUFs) that provide real-valued readout symbols. Compared to classical binary PUFs, more entropy can be extracted from each basic building block (PUF node), resulting in longer keys/fingerprints and/or a higher reliability. To this end, a coded modulation and signal shaping scheme that matches the (approximately) Gaussian distribution of the readout has to be employed. A new helper data scheme is proposed that works with any type of coded modulation/shaping scheme. Compared to the permutation scheme from the literature, less amount of helper data has to be generated and a higher reliability is achieved. Moreover, the recently proposed idea of a two-metric helper data scheme is generalized to coded modulation and a general S-metric scheme. It is shown how extra helper data can be generated to improve decodability. The proposed schemes are assessed by numerical simulations and by evaluation of measurement data. We compare multi-level codes using a new rate design strategy with bit-interleaved coded modulation and trellis shaping with a distribution matcher. By selecting a suitable design, the rate per PUF node that can be reliably extracted can be as high as 2~bit/node.
Debugging is famously one the hardest parts in programming. In this paper, we tackle the question: what does a debugging environment look like when we take interactive visualization as a central design principle? We introduce Anteater, an interactive visualization system for tracing and exploring the execution of Python programs. Existing systems often have visualization components built on top of an existing infrastructure. In contrast, Anteater's organization of trace data enables an intermediate representation which can be leveraged to automatically synthesize a variety of visualizations and interactions. These interactive visualizations help with tasks such as discovering important structures in the execution and understanding and debugging unexpected behaviors. To assess the utility of Anteater, we conducted a participant study where programmers completed tasks on their own python programs using Anteater. Finally, we discuss limitations and where further research is needed.
Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.
Salient object detection is a problem that has been considered in detail and many solutions proposed. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried. This implies that some objects are more likely to be judged salient than others, and implies a relative rank exists on salient objects. The solution presented in this paper solves this more general problem that considers relative rank, and we propose data and metrics suitable to measuring success in a relative objects saliency landscape. A novel deep learning solution is proposed based on a hierarchical representation of relative saliency and stage-wise refinement. We also show that the problem of salient object subitizing can be addressed with the same network, and our approach exceeds performance of any prior work across all metrics considered (both traditional and newly proposed).
To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.