This study investigated the integration of cutting-edge technologies and methodologies for creating dynamic, user-centered library environments. In creative strategies for engagement and innovation, library users must be empowered to undertake the new role of modernizing library services and enhancing user experiences. It also enhances the information management and user engagement. This can be attained from personalized approaches, such as recommendation systems to interactive platforms that will have effective experiences tailored to users of different natures. It investigates the consumer engagement practices of enthusiasm, sharing, and learning about their roles in cognitive, affective, and behavioural engagements. Combined, these new approaches will help promote learning, interaction, and growth, add value, and have a more positive impact on users. The challenge for libraries in this rapidly changing, technologically advancing, and digitally networked world, with a base of expectant users, is to remain relevant and engaging. This study discusses innovative strategies for empowering library users and enhancing their engagement through creative and technological approaches. This investigation was conducted to integrate cutting-edge technologies and methodologies into creating dynamic library settings that are user-centered and foster learning, interaction, and personal growth.
This work introduces ClustEm4Ano, an anonymization pipeline that can be used for generalization and suppression-based anonymization of nominal textual tabular data. It automatically generates value generalization hierarchies (VGHs) that, in turn, can be used to generalize attributes in quasi-identifiers. The pipeline leverages embeddings to generate semantically close value generalizations through iterative clustering. We applied KMeans and Hierarchical Agglomerative Clustering on $13$ different predefined text embeddings (both open and closed-source (via APIs)). Our approach is experimentally tested on a well-known benchmark dataset for anonymization: The UCI Machine Learning Repository's Adult dataset. ClustEm4Ano supports anonymization procedures by offering more possibilities compared to using arbitrarily chosen VGHs. Experiments demonstrate that these VGHs can outperform manually constructed ones in terms of downstream efficacy (especially for small $k$-anonymity ($2 \leq k \leq 30$)) and therefore can foster the quality of anonymized datasets. Our implementation is made public.
Recent advancements in text-to-speech and speech conversion technologies have enabled the creation of highly convincing synthetic speech. While these innovations offer numerous practical benefits, they also cause significant security challenges when maliciously misused. Therefore, there is an urgent need to detect these synthetic speech signals. Phoneme features provide a powerful speech representation for deepfake detection. However, previous phoneme-based detection approaches typically focused on specific phonemes, overlooking temporal inconsistencies across the entire phoneme sequence. In this paper, we develop a new mechanism for detecting speech deepfakes by identifying the inconsistencies of phoneme-level speech features. We design an adaptive phoneme pooling technique that extracts sample-specific phoneme-level features from frame-level speech data. By applying this technique to features extracted by pre-trained audio models on previously unseen deepfake datasets, we demonstrate that deepfake samples often exhibit phoneme-level inconsistencies when compared to genuine speech. To further enhance detection accuracy, we propose a deepfake detector that uses a graph attention network to model the temporal dependencies of phoneme-level features. Additionally, we introduce a random phoneme substitution augmentation technique to increase feature diversity during training. Extensive experiments on four benchmark datasets demonstrate the superior performance of our method over existing state-of-the-art detection methods.
Cypher, the query language for Neo4j graph databases, plays a critical role in enabling graph-based analytics and data exploration. While substantial research has been dedicated to natural language to SQL query generation (Text2SQL), the analogous problem for graph databases referred to as Text2Cypher remains underexplored. In this work, we introduce SynthCypher, a fully synthetic and automated data generation pipeline designed to address this gap. SynthCypher employs a novel LLMSupervised Generation-Verification framework, ensuring syntactically and semantically correct Cypher queries across diverse domains and query complexities. Using this pipeline, we create SynthCypher Dataset, a large-scale benchmark containing 29.8k Text2Cypher instances. Fine-tuning open-source large language models (LLMs), including LLaMa-3.1- 8B, Mistral-7B, and QWEN-7B, on SynthCypher yields significant performance improvements of up to 40% on the Text2Cypher test set and 30% on the SPIDER benchmark adapted for graph databases. This work demonstrates that high-quality synthetic data can effectively advance the state-of-the-art in Text2Cypher tasks.
As quantum computing continues to advance, the development of quantum-secure neural networks is crucial to prevent adversarial attacks. This paper proposes three quantum-secure design principles: (1) using post-quantum cryptography, (2) employing quantum-resistant neural network architectures, and (3) ensuring transparent and accountable development and deployment. These principles are supported by various quantum strategies, including quantum data anonymization, quantum-resistant neural networks, and quantum encryption. The paper also identifies open issues in quantum security, privacy, and trust, and recommends exploring adaptive adversarial attacks and auto adversarial attacks as future directions. The proposed design principles and recommendations provide guidance for developing quantum-secure neural networks, ensuring the integrity and reliability of machine learning models in the quantum era.
Metaverse technologies demand accurate, real-time, and immersive modeling on consumer-grade hardware for both non-human perception (e.g., drone/robot/autonomous car navigation) and immersive technologies like AR/VR, requiring both structural accuracy and photorealism. However, there exists a knowledge gap in how to apply geometric reconstruction and photorealism modeling (novel view synthesis) in a unified framework. To address this gap and promote the development of robust and immersive modeling and rendering with consumer-grade devices, we propose a real-world Multi-Sensor Hybrid Room Dataset (MuSHRoom). Our dataset presents exciting challenges and requires state-of-the-art methods to be cost-effective, robust to noisy data and devices, and can jointly learn 3D reconstruction and novel view synthesis instead of treating them as separate tasks, making them ideal for real-world applications. We benchmark several famous pipelines on our dataset for joint 3D mesh reconstruction and novel view synthesis. Our dataset and benchmark show great potential in promoting the improvements for fusing 3D reconstruction and high-quality rendering in a robust and computationally efficient end-to-end fashion. The dataset and code are available at the project website: //xuqianren.github.io/publications/MuSHRoom/.
Fog computing brings about a transformative shift in data management, presenting unprecedented opportunities for enhanced performance and reduced latency. However, one of the key aspects of fog computing revolves around ensuring efficient power and reliability management. To address this challenge, we have introduced a novel model that proposes a non-cooperative game theory-based strategy to strike a balance between power consumption and reliability in decision-making processes. Our proposed model capitalizes on the Cold Primary/Backup strategy (CPB) to guarantee reliability target by re-executing tasks to different nodes when a fault occurs, while also leveraging Dynamic Voltage and Frequency Scaling (DVFS) to reduce power consumption during task execution and maximizing overall efficiency. Non-cooperative game theory plays a pivotal role in our model, as it facilitates the development of strategies and solutions that uphold reliability while reducing power consumption. By treating the trade-off between power and reliability as a non-cooperative game, our proposed method yields significant energy savings, with up to a 35% reduction in energy consumption, 41% decrease in wait time, and 31% shorter completion time compared to state-of-the-art approaches. Our findings underscore the value of game theory in optimizing power and reliability within fog computing environments, demonstrating its potential for driving substantial improvements
Collaborative machine learning (CML) provides a promising paradigm for democratizing advanced technologies by enabling cost-sharing among participants. However, the potential for rent-seeking behaviors among parties can undermine such collaborations. Contract theory presents a viable solution by rewarding participants with models of varying accuracy based on their contributions. However, unlike monetary compensation, using models as rewards introduces unique challenges, particularly due to the stochastic nature of these rewards when contribution costs are privately held information. This paper formalizes the optimal contracting problem within CML and proposes a transformation that simplifies the non-convex optimization problem into one that can be solved through convex optimization algorithms. We conduct a detailed analysis of the properties that an optimal contract must satisfy when models serve as the rewards, and we explore the potential benefits and welfare implications of these contract-driven CML schemes through numerical experiments.
Acquiring, processing, and visualizing geospatial data requires significant computing resources, especially for large spatio-temporal domains. This challenge hinders the rapid discovery of predictive features, which is essential for advancing geospatial modeling. To address this, we developed Similarity Search (Sims), a no-code web tool that allows users to visualize, compare, cluster, and perform similarity search over defined regions of interest using Google Earth Engine as a backend. Sims is designed to complement existing modeling tools by focusing on feature exploration rather than model creation. We demonstrate the utility of Sims through a case study analyzing simulated maize yield data in Rwanda, where we evaluate how different combinations of soil, weather, and agronomic features affect the clustering of yield response zones. Sims is open source and available at //github.com/microsoft/Sims
The growing interest in autonomous driving calls for realistic simulation platforms capable of accurately simulating cooperative perception process in realistic traffic scenarios. Existing studies for cooperative perception often have not accounted for transmission latency and errors in real-world environments. To address this gap, we introduce EI-Drive, an edge-AI based autonomous driving simulation platform that integrates advanced cooperative perception with more realistic communication models. Built on the CARLA framework, EI-Drive features new modules for cooperative perception while taking into account transmission latency and errors, providing a more realistic platform for evaluating cooperative perception algorithms. In particular, the platform enables vehicles to fuse data from multiple sources, improving situational awareness and safety in complex environments. With its modular design, EI-Drive allows for detailed exploration of sensing, perception, planning, and control in various cooperative driving scenarios. Experiments using EI-Drive demonstrate significant improvements in vehicle safety and performance, particularly in scenarios with complex traffic flow and network conditions. All code and documents are accessible on our GitHub page: \url{//ucd-dare.github.io/eidrive.github.io/}.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.