亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In multi-armed bandit (MAB) experiments, it is often advantageous to continuously produce inference on the average treatment effect (ATE) between arms as new data arrive and determine a data-driven stopping time for the experiment. We develop the Mixture Adaptive Design (MAD), a new experimental design for multi-armed bandit experiments that produces powerful and anytime-valid inference on the ATE for \emph{any} bandit algorithm of the experimenter's choice, even those without probabilistic treatment assignment. Intuitively, the MAD "mixes" any bandit algorithm of the experimenter's choice with a Bernoulli design through a tuning parameter $\delta_t$, where $\delta_t$ is a deterministic sequence that decreases the priority placed on the Bernoulli design as the sample size grows. We prove that for $\delta_t = \omega\left(t^{-1/4}\right)$, the MAD generates anytime-valid asymptotic confidence sequences that are guaranteed to shrink around the true ATE. Hence, the experimenter is guaranteed to detect a true non-zero treatment effect in finite time. Additionally, we prove that the regret of the MAD approaches that of its underlying bandit algorithm over time, and hence, incurs a relatively small loss in regret in return for powerful inferential guarantees. Finally, we conduct an extensive simulation study exhibiting that the MAD achieves finite-sample anytime validity and high power without significant losses in finite-sample reward.

相關內容

Generating rationales that justify scoring decisions has been a promising way to facilitate explainability in automated scoring systems. However, existing methods do not match the accuracy of classifier-based methods. Plus, the generated rationales often contain hallucinated information. To address these issues, we propose a novel framework capable of generating more faithful rationales and, more importantly, matching performance with classifier-based black-box scoring systems. We first mimic the human assessment process by querying Large Language Models (LLMs) to generate a thought tree. We then summarise intermediate assessment decisions from each thought tree path for creating synthetic rationale data and rationale preference data. Finally, we utilise the generated synthetic data to calibrate LLMs through a two-step training process: supervised fine-tuning and preference optimization. Extensive experimental results demonstrate that our framework achieves a 38% assessment performance improvement in the QWK score compared to prior work while producing higher-quality rationales, as recognised by human evaluators and LLMs. Our work sheds light on the effectiveness of performing preference optimization using synthetic preference data obtained from thought tree paths.

Conversational passage retrieval is challenging as it often requires the resolution of references to previous utterances and needs to deal with the complexities of natural language, such as coreference and ellipsis. To address these challenges, pre-trained sequence-to-sequence neural query rewriters are commonly used to generate a single de-contextualized query based on conversation history. Previous research shows that combining multiple query rewrites for the same user utterance has a positive effect on retrieval performance. We propose the use of a neural query rewriter to generate multiple queries and show how to integrate those queries in the passage retrieval pipeline efficiently. The main strength of our approach lies in its simplicity: it leverages how the beam search algorithm works and can produce multiple query rewrites at no additional cost. Our contributions further include devising ways to utilize multi-query rewrites in both sparse and dense first-pass retrieval. We demonstrate that applying our approach on top of a standard passage retrieval pipeline delivers state-of-the-art performance without sacrificing efficiency.

Neural networks often operate in the overparameterized regime, in which there are far more parameters than training samples, allowing the training data to be fit perfectly. That is, training the network effectively learns an interpolating function, and properties of the interpolant affect predictions the network will make on new samples. This manuscript explores how properties of such functions learned by neural networks of depth greater than two layers. Our framework considers a family of networks of varying depths that all have the same capacity but different representation costs. The representation cost of a function induced by a neural network architecture is the minimum sum of squared weights needed for the network to represent the function; it reflects the function space bias associated with the architecture. Our results show that adding additional linear layers to the input side of a shallow ReLU network yields a representation cost favoring functions with low mixed variation - that is, it has limited variation in directions orthogonal to a low-dimensional subspace and can be well approximated by a single- or multi-index model. Such functions may be represented by the composition of a function with low two-layer representation cost and a low-rank linear operator. Our experiments confirm this behavior in standard network training regimes. They additionally show that linear layers can improve generalization and the learned network is well-aligned with the true latent low-dimensional linear subspace when data is generated using a multi-index model.

Mixture-of-experts (MoE) is gaining increasing attention due to its unique properties and remarkable performance, especially for language tasks. By sparsely activating a subset of parameters for each token, MoE architecture could increase the model size without sacrificing computational efficiency, achieving a better trade-off between performance and training costs. However, the underlying mechanism of MoE still lacks further exploration, and its modularization degree remains questionable. In this paper, we make an initial attempt to understand the inner workings of MoE-based large language models. Concretely, we comprehensively study the parametric and behavioral features of three recent MoE-based models and reveal some intriguing observations, including (1) Neurons act like fine-grained experts. (2) The router of MoE usually selects experts with larger output norms. (3) The expert diversity increases as the layer increases, while the last layer is an outlier. Based on the observations, we also provide suggestions for a broad spectrum of MoE practitioners, such as router design and expert allocation. We hope this work could shed light on future research on the MoE framework and other modular architectures. Code is available at //github.com/kamanphoebe/Look-into-MoEs.

We consider a novel multi-arm bandit (MAB) setup, where a learner needs to communicate the actions to distributed agents over erasure channels, while the rewards for the actions are directly available to the learner through external sensors. In our model, while the distributed agents know if an action is erased, the central learner does not (there is no feedback), and thus does not know whether the observed reward resulted from the desired action or not. We propose a scheme that can work on top of any (existing or future) MAB algorithm and make it robust to action erasures. Our scheme results in a worst-case regret over action-erasure channels that is at most a factor of $O(1/\sqrt{1-\epsilon})$ away from the no-erasure worst-case regret of the underlying MAB algorithm, where $\epsilon$ is the erasure probability. We also propose a modification of the successive arm elimination algorithm and prove that its worst-case regret is $\Tilde{O}(\sqrt{KT}+K/(1-\epsilon))$, which we prove is optimal by providing a matching lower bound.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

Hyperproperties are commonly used in computer security to define information-flow policies and other requirements that reason about the relationship between multiple computations. In this paper, we study a novel class of hyperproperties where the individual computation paths are chosen by the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL*, an extension of computation tree logic with path variables and strategy quantifiers. Our logic can express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to avoid information leakage. HyperATL* is particularly useful to specify asynchronous hyperproperties, i.e., hyperproperties where the speed of the execution on the different computation paths depends on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present a model checking algorithm for HyperATL* based on alternating automata, and show that our algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a prototype model checker for a fragment of HyperATL*, able to check various security properties on small programs.

The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司