This study presents Weighted Sampled Split Learning (WSSL), an innovative framework tailored to bolster privacy, robustness, and fairness in distributed machine learning systems. Unlike traditional approaches, WSSL disperses the learning process among multiple clients, thereby safeguarding data confidentiality. Central to WSSL's efficacy is its utilization of weighted sampling. This approach ensures equitable learning by tactically selecting influential clients based on their contributions. Our evaluation of WSSL spanned various client configurations and employed two distinct datasets: Human Gait Sensor and CIFAR-10. We observed three primary benefits: heightened model accuracy, enhanced robustness, and maintained fairness across diverse client compositions. Notably, our distributed frameworks consistently surpassed centralized counterparts, registering accuracy peaks of 82.63% and 75.51% for the Human Gait Sensor and CIFAR-10 datasets, respectively. These figures contrast with the top accuracies of 81.12% and 58.60% achieved by centralized systems. Collectively, our findings champion WSSL as a potent and scalable successor to conventional centralized learning, marking it as a pivotal stride forward in privacy-focused, resilient, and impartial distributed machine learning.
Due to the advantages of leveraging unlabeled data and learning meaningful representations, semi-supervised learning and contrastive learning have been progressively combined to achieve better performances in popular applications with few labeled data and abundant unlabeled data. One common manner is assigning pseudo-labels to unlabeled samples and selecting positive and negative samples from pseudo-labeled samples to apply contrastive learning. However, the real-world data may be imbalanced, causing pseudo-labels to be biased toward the majority classes and further undermining the effectiveness of contrastive learning. To address the challenge, we propose Contrastive Learning with Augmented Features (CLAF). We design a class-dependent feature augmentation module to alleviate the scarcity of minority class samples in contrastive learning. For each pseudo-labeled sample, we select positive and negative samples from labeled data instead of unlabeled data to compute contrastive loss. Comprehensive experiments on imbalanced image classification datasets demonstrate the effectiveness of CLAF in the context of imbalanced semi-supervised learning.
This research study delves into the conceptualization, development, and deployment of an innovative learning analytics tool, leveraging the capabilities of OpenAI's GPT-4 model. This tool is designed to quantify student engagement, map learning progression, and evaluate the efficacy of diverse instructional strategies within an educational context. Through the analysis of various critical data points such as students' stress levels, curiosity, confusion, agitation, topic preferences, and study methods, the tool offers a rich, multi-dimensional view of the learning environment. Furthermore, it employs Bloom's taxonomy as a framework to gauge the cognitive levels addressed by students' questions, thereby elucidating their learning progression. The information gathered from these measurements can empower educators by providing valuable insights to enhance teaching methodologies, pinpoint potential areas for improvement, and craft personalized interventions for individual students. The study articulates the design intricacies, implementation strategy, and thorough evaluation of the learning analytics tool, underscoring its prospective contributions to enhancing educational outcomes and bolstering student success. Moreover, the practicalities of integrating the tool within existing educational platforms and the requisite robust, secure, and scalable technical infrastructure are addressed. This research opens avenues for harnessing AI's potential in shaping the future of education, facilitating data-driven pedagogical decisions, and ultimately fostering a more conducive, personalized learning environment.
Disentangled Graph Convolutional Network (DisenGCN) is an encouraging framework to disentangle the latent factors arising in a real-world graph. However, it relies on disentangling information heavily from a local range (i.e., a node and its 1-hop neighbors), while the local information in many cases can be uneven and incomplete, hindering the interpretabiliy power and model performance of DisenGCN. In this paper\footnote{This paper is a lighter version of \href{//jingweio.github.io/assets/pdf/tnnls22.pdf}{"Learning Disentangled Graph Convolutional Networks Locally and Globally"} where the results and analysis have been reworked substantially. Digital Object Identifier \url{//doi.org/10.1109/TNNLS.2022.3195336}.}, we introduce a novel Local and Global Disentangled Graph Convolutional Network (LGD-GCN) to capture both local and global information for graph disentanglement. LGD-GCN performs a statistical mixture modeling to derive a factor-aware latent continuous space, and then constructs different structures w.r.t. different factors from the revealed space. In this way, the global factor-specific information can be efficiently and selectively encoded via a message passing along these built structures, strengthening the intra-factor consistency. We also propose a novel diversity promoting regularizer employed with the latent space modeling, to encourage inter-factor diversity. Evaluations of the proposed LGD-GCN on the synthetic and real-world datasets show a better interpretability and improved performance in node classification over the existing competitive models. Code is available at \url{//github.com/jingweio/LGD-GCN}.
We introduce EV3, a novel meta-optimization framework designed to efficiently train scalable machine learning models through an intuitive explore-assess-adapt protocol. In each iteration of EV3, we explore various model parameter updates, assess them using pertinent evaluation methods, and then adapt the model based on the optimal updates and previous progress history. EV3 offers substantial flexibility without imposing stringent constraints like differentiability on the key objectives relevant to the tasks of interest, allowing for exploratory updates with intentionally-biased gradients and through a diversity of losses and optimizers. Additionally, the assessment phase provides reliable safety controls to ensure robust generalization, and can dynamically prioritize tasks in scenarios with multiple objectives. With inspiration drawn from evolutionary algorithms, meta-learning, and neural architecture search, we investigate an application of EV3 to knowledge distillation. Our experimental results illustrate EV3's capability to safely explore the modeling landscape, while hinting at its potential applicability across numerous domains due to its inherent flexibility and adaptability. Finally, we provide a JAX implementation of EV3, along with source code for experiments, available at: //github.com/google-research/google-research/tree/master/ev3.
This work presents Adaptive Robot Coordination (ARC), a novel hybrid framework for multi-robot motion planning (MRMP) that employs local subproblems to resolve inter-robot conflicts. ARC creates subproblems centered around conflicts, and the solutions represent the robot motions required to resolve these conflicts. The use of subproblems enables an inexpensive hybrid exploration of the multi-robot planning space. ARC leverages the hybrid exploration by dynamically adjusting the coupling and decoupling of the multi-robot planning space. This allows ARC to adapt the levels of coordination efficiently by planning in decoupled spaces, where robots can operate independently, and in coupled spaces where coordination is essential. ARC is probabilistically complete, can be used for any robot, and produces efficient cost solutions in reduced planning times. Through extensive evaluation across representative scenarios with different robots requiring various levels of coordination, ARC demonstrates its ability to provide simultaneous scalability and precise coordination. ARC is the only method capable of solving all the scenarios and is competitive with coupled, decoupled, and hybrid baselines.
Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.
Transformer is a promising neural network learner, and has achieved great success in various machine learning tasks. Thanks to the recent prevalence of multimodal applications and big data, Transformer-based multimodal learning has become a hot topic in AI research. This paper presents a comprehensive survey of Transformer techniques oriented at multimodal data. The main contents of this survey include: (1) a background of multimodal learning, Transformer ecosystem, and the multimodal big data era, (2) a theoretical review of Vanilla Transformer, Vision Transformer, and multimodal Transformers, from a geometrically topological perspective, (3) a review of multimodal Transformer applications, via two important paradigms, i.e., for multimodal pretraining and for specific multimodal tasks, (4) a summary of the common challenges and designs shared by the multimodal Transformer models and applications, and (5) a discussion of open problems and potential research directions for the community.
Graph neural networks (GNNs) have emerged as a series of competent graph learning methods for diverse real-world scenarios, ranging from daily applications like recommendation systems and question answering to cutting-edge technologies such as drug discovery in life sciences and n-body simulation in astrophysics. However, task performance is not the only requirement for GNNs. Performance-oriented GNNs have exhibited potential adverse effects like vulnerability to adversarial attacks, unexplainable discrimination against disadvantaged groups, or excessive resource consumption in edge computing environments. To avoid these unintentional harms, it is necessary to build competent GNNs characterised by trustworthiness. To this end, we propose a comprehensive roadmap to build trustworthy GNNs from the view of the various computing technologies involved. In this survey, we introduce basic concepts and comprehensively summarise existing efforts for trustworthy GNNs from six aspects, including robustness, explainability, privacy, fairness, accountability, and environmental well-being. Additionally, we highlight the intricate cross-aspect relations between the above six aspects of trustworthy GNNs. Finally, we present a thorough overview of trending directions for facilitating the research and industrialisation of trustworthy GNNs.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.