亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Atrial fibrillation (AF) is the most common arrhythmia, associated with significant burdens to patients and the healthcare system. The atrioventricular (AV) node plays a vital role in regulating heart rate during AF, but is often insufficient in regards to maintaining a healthy heart rate. Thus, the AV node properties are modified using rate-control drugs. Hence, quantifying individual differences in diurnal and short-term variability of AV-nodal function could aid in personalized treatment selection. This study presents a novel methodology for estimating the refractory period (RP) and conduction delay (CD) trends and their uncertainty in the two pathways of the AV node during 24 hours using non-invasive data. This was achieved using a network model together with a problem-specific genetic algorithm and an approximate Bayesian computation algorithm. Diurnal and short-term variability in the estimated RP and CD was quantified by the difference between the daytime and nighttime estimates and by the Kolmogorov-Smirnov distance between adjacent 10-minute segments in the 24-hour trends. Holter ECGs from 51 patients with permanent AF during baseline were analyzed, and the predictive power of variations in RP and CD on the resulting heart rate reduction after treatment with four rate control drugs was investigated. Diurnal variability yielded no correlation to treatment outcome, and no prediction of drug outcome was possible using the machine learning tools. However, a correlation between the short-term variability for the RP and CD in the fast pathway and resulting heart rate reduction during treatment with metoprolol ($\rho=0.48, p<0.005$ in RP, $\rho=0.35, p<0.05$ in CD) were found. The proposed methodology enables non-invasive estimation of the AV node properties during 24 hours, which may have the potential to assist in treatment selection.

相關內容

Digital Imaging and Communication System (DICOM) is widely used throughout the public health sector for portability in medical imaging. However, these DICOM files have vulnerabilities present in the preamble section. Successful exploitation of these vulnerabilities can allow attackers to embed executable codes in the 128-Byte preamble of DICOM files. Embedding the malicious executable will not interfere with the readability or functionality of DICOM imagery. However, it will affect the underline system silently upon viewing these files. This paper shows the infiltration of Windows malware executables into DICOM files. On viewing the files, the malicious DICOM will get executed and eventually infect the entire hospital network through the radiologist's workstation. The code injection process of executing malware in DICOM files affects the hospital networks and workstations' memory. Memory forensics for the infected radiologist's workstation is crucial as it can detect which malware disrupts the hospital environment, and future detection methods can be deployed. In this paper, we consider the machine learning (ML) algorithms to conduct memory forensics on three memory dump categories: Trojan, Spyware, and Ransomware, taken from the CIC-MalMem-2022 dataset. We obtain the highest accuracy of 75\% with the Random Forest model. For estimating the feature importance for ML model prediction, we leveraged the concept of Shapley values.

Internet of Things (IoT) applications are composed of massive quantities of resource-limited devices that collect sensitive data with long-term operational and security requirements. With the threat of emerging quantum computers, Post-Quantum Cryptography (PQC) is a critical requirement for IoTs. In particular, digital signatures offer scalable authentication with non-repudiation and are an essential tool for IoTs. However, as seen in NIST PQC standardization, post-quantum signatures are extremely costly for resource-limited IoTs. Hence, there is a significant need for quantum-safe signatures that respect the processing, memory, and bandwidth limitations of IoTs. In this paper, we created a new lightweight quantum-safe digital signature referred to as INFinity-HORS (INF-HORS), which is (to the best of our knowledge) the first signer-optimal hash-based signature with (polynomially) unbounded signing capability. INF-HORS enables a verifier to non-interactively construct one-time public keys from a master public key via encrypted function evaluations. This strategy avoids the performance bottleneck of hash-based standards (e.g., SPHINCS+) by eliminating hyper-tree structures. It also does not require a trusted party or non-colliding servers to distribute public keys. Our performance analysis confirms that INF-HORS is magnitudes of times more signer computation efficient than selected NIST PQC schemes (e.g., SPHINCS+, Dilithium, Falcon) with a small memory footprint.

Percutaneous needle insertions are commonly performed for diagnostic and therapeutic purposes as an effective alternative to more invasive surgical procedures. However, the outcome of needle-based approaches relies heavily on the accuracy of needle placement, which remains a challenge even with robot assistance and medical imaging guidance due to needle deflection caused by contact with soft tissues. In this paper, we present a novel mechanics-based 2D bevel-tip needle model that can account for the effect of nonlinear strain-dependent behavior of biological soft tissues under compression. Real-time finite element simulation allows multiple control inputs along the length of the needle with full three-degree-of-freedom (DOF) planar needle motions. Cross-validation studies using custom-designed multi-layer tissue phantoms as well as heterogeneous chicken breast tissues result in less than 1mm in-plane errors for insertions reaching depths of up to 61 mm, demonstrating the validity and generalizability of the proposed method.

Training an overparameterized neural network can yield minimizers of the same level of training loss and yet different generalization capabilities. With evidence that indicates a correlation between sharpness of minima and their generalization errors, increasing efforts have been made to develop an optimization method to explicitly find flat minima as more generalizable solutions. This sharpness-aware minimization (SAM) strategy, however, has not been studied much yet as to how overparameterization can actually affect its behavior. In this work, we analyze SAM under varying degrees of overparameterization and present both empirical and theoretical results that suggest a critical influence of overparameterization on SAM. Specifically, we first use standard techniques in optimization to prove that SAM can achieve a linear convergence rate under overparameterization in a stochastic setting. We also show that the linearly stable minima found by SAM are indeed flatter and have more uniformly distributed Hessian moments compared to those of SGD. These results are corroborated with our experiments that reveal a consistent trend that the generalization improvement made by SAM continues to increase as the model becomes more overparameterized. We further present that sparsity can open up an avenue for effective overparameterization in practice.

Ultrasound (US) imaging is widely used for biometric measurement and diagnosis of internal organs due to the advantages of being real-time and radiation-free. However, due to inter-operator variations, resulting images highly depend on the experience of sonographers. This work proposes an intelligent robotic sonographer to autonomously "explore" target anatomies and navigate a US probe to a relevant 2D plane by learning from the expert. The underlying high-level physiological knowledge from experts is inferred by a neural reward function, using a ranked pairwise image comparisons approach in a self-supervised fashion. This process can be referred to as understanding the "language of sonography". Considering the generalization capability to overcome inter-patient variations, mutual information is estimated by a network to explicitly disentangle the task-related and domain features in latent space. The robotic localization is carried out in coarse-to-fine mode based on the predicted reward associated with B-mode images. To validate the effectiveness of the proposed reward inference network, representative experiments were performed on vascular phantoms ("line" target), two types of ex-vivo animal organs (chicken heart and lamb kidney) phantoms ("point" target) and in-vivo human carotids, respectively. To further validate the performance of the autonomous acquisition framework, physical robotic acquisitions were performed on three phantoms (vascular, chicken heart, and lamb kidney). The results demonstrated that the proposed advanced framework can robustly work on a variety of seen and unseen phantoms as well as in-vivo human carotid data.

Transformer-based models, such as BERT and GPT, have been widely adopted in natural language processing (NLP) due to their exceptional performance. However, recent studies show their vulnerability to textual adversarial attacks where the model's output can be misled by intentionally manipulating the text inputs. Despite various methods that have been proposed to enhance the model's robustness and mitigate this vulnerability, many require heavy consumption resources (e.g., adversarial training) or only provide limited protection (e.g., defensive dropout). In this paper, we propose a novel method called dynamic attention, tailored for the transformer architecture, to enhance the inherent robustness of the model itself against various adversarial attacks. Our method requires no downstream task knowledge and does not incur additional costs. The proposed dynamic attention consists of two modules: (I) attention rectification, which masks or weakens the attention value of the chosen tokens, and (ii) dynamic modeling, which dynamically builds the set of candidate tokens. Extensive experiments demonstrate that dynamic attention significantly mitigates the impact of adversarial attacks, improving up to 33\% better performance than previous methods against widely-used adversarial attacks. The model-level design of dynamic attention enables it to be easily combined with other defense methods (e.g., adversarial training) to further enhance the model's robustness. Furthermore, we demonstrate that dynamic attention preserves the state-of-the-art robustness space of the original model compared to other dynamic modeling methods.

Traditional Chinese medicine (TCM) prescription is the most critical form of TCM treatment, and uncovering the complex nonlinear relationship between symptoms and TCM is of great significance for clinical practice and assisting physicians in diagnosis and treatment. Although there have been some studies on TCM prescription generation, these studies consider a single factor and directly model the symptom-prescription generation problem mainly based on symptom descriptions, lacking guidance from TCM knowledge. To this end, we propose a RoBERTa and Knowledge Enhancement model for Prescription Generation of Traditional Chinese Medicine (RoKEPG). RoKEPG is firstly pre-trained by our constructed TCM corpus, followed by fine-tuning the pre-trained model, and the model is guided to generate TCM prescriptions by introducing four classes of knowledge of TCM through the attention mask matrix. Experimental results on the publicly available TCM prescription dataset show that RoKEPG improves the F1 metric by about 2% over the baseline model with the best results.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司