亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conformal inference provides a general distribution-free method to rigorously calibrate the output of any machine learning algorithm for novelty detection. While this approach has many strengths, it has the limitation of being randomized, in the sense that it may lead to different results when analyzing twice the same data, and this can hinder the interpretation of any findings. We propose to make conformal inferences more stable by leveraging suitable conformal e-values instead of p-values to quantify statistical significance. This solution allows the evidence gathered from multiple analyses of the same data to be aggregated effectively while provably controlling the false discovery rate. Further, we show that the proposed method can reduce randomness without much loss of power compared to standard conformal inference, partly thanks to an innovative way of weighting conformal e-values based on additional side information carefully extracted from the same data. Simulations with synthetic and real data confirm this solution can be effective at eliminating random noise in the inferences obtained with state-of-the-art alternative techniques, sometimes also leading to higher power.

相關內容

AutoML platforms have numerous options for the algorithms to try for each step of the analysis, i.e., different possible algorithms for imputation, transformations, feature selection, and modelling. Finding the optimal combination of algorithms and hyper-parameter values is computationally expensive, as the number of combinations to explore leads to an exponential explosion of the space. In this paper, we present the Sequential Hyper-parameter Space Reduction (SHSR) algorithm that reduces the space for an AutoML tool with negligible drop in its predictive performance. SHSR is a meta-level learning algorithm that analyzes past runs of an AutoML tool on several datasets and learns which hyper-parameter values to filter out from consideration on a new dataset to analyze. SHSR is evaluated on 284 classification and 375 regression problems, showing an approximate 30% reduction in execution time with a performance drop of less than 0.1%.

We study dynamic algorithms in the model of algorithms with predictions. We assume the algorithm is given imperfect predictions regarding future updates, and we ask how such predictions can be used to improve the running time. This can be seen as a model interpolating between classic online and offline dynamic algorithms. Our results give smooth tradeoffs between these two extreme settings. First, we give algorithms for incremental and decremental transitive closure and approximate APSP that take as an additional input a predicted sequence of updates (edge insertions, or edge deletions, respectively). They preprocess it in $\tilde{O}(n^{(3+\omega)/2})$ time, and then handle updates in $\tilde{O}(1)$ worst-case time and queries in $\tilde{O}(\eta^2)$ worst-case time. Here $\eta$ is an error measure that can be bounded by the maximum difference between the predicted and actual insertion (deletion) time of an edge, i.e., by the $\ell_\infty$-error of the predictions. The second group of results concerns fully dynamic problems with vertex updates, where the algorithm has access to a predicted sequence of the next $n$ updates. We show how to solve fully dynamic triangle detection, maximum matching, single-source reachability, and more, in $O(n^{\omega-1}+n\eta_i)$ worst-case update time. Here $\eta_i$ denotes how much earlier the $i$-th update occurs than predicted. Our last result is a reduction that transforms a worst-case incremental algorithm without predictions into a fully dynamic algorithm which is given a predicted deletion time for each element at the time of its insertion. As a consequence we can, e.g., maintain fully dynamic exact APSP with such predictions in $\tilde{O}(n^2)$ worst-case vertex insertion time and $\tilde{O}(n^2 (1+\eta_i))$ worst-case vertex deletion time (for the prediction error $\eta_i$ defined as above).

The multiobjective evolutionary optimization algorithm (MOEA) is a powerful approach for tackling multiobjective optimization problems (MOPs), which can find a finite set of approximate Pareto solutions in a single run. However, under mild regularity conditions, the Pareto optimal set of a continuous MOP could be a low dimensional continuous manifold that contains infinite solutions. In addition, structure constraints on the whole optimal solution set, which characterize the patterns shared among all solutions, could be required in many real-life applications. It is very challenging for existing finite population based MOEAs to handle these structure constraints properly. In this work, we propose the first model-based algorithmic framework to learn the whole solution set with structure constraints for multiobjective optimization. In our approach, the Pareto optimality can be traded off with a preferred structure among the whole solution set, which could be crucial for many real-world problems. We also develop an efficient evolutionary learning method to train the set model with structure constraints. Experimental studies on benchmark test suites and real-world application problems demonstrate the promising performance of our proposed framework.

Traditionally, data valuation (DV) is posed as a problem of equitably splitting the validation performance of a learning algorithm among the training data. As a result, the calculated data values depend on many design choices of the underlying learning algorithm. However, this dependence is undesirable for many DV use cases, such as setting priorities over different data sources in a data acquisition process and informing pricing mechanisms in a data marketplace. In these scenarios, data needs to be valued before the actual analysis and the choice of the learning algorithm is still undetermined then. Another side-effect of the dependence is that to assess the value of individual points, one needs to re-run the learning algorithm with and without a point, which incurs a large computation burden. This work leapfrogs over the current limits of data valuation methods by introducing a new framework that can value training data in a way that is oblivious to the downstream learning algorithm. Our main results are as follows. (1) We develop a proxy for the validation performance associated with a training set based on a non-conventional class-wise Wasserstein distance between training and validation sets. We show that the distance characterizes the upper bound of the validation performance for any given model under certain Lipschitz conditions. (2) We develop a novel method to value individual data based on the sensitivity analysis of the class-wise Wasserstein distance. Importantly, these values can be directly obtained for free from the output of off-the-shelf optimization solvers when computing the distance. (3) We evaluate our new data valuation framework over various use cases related to detecting low-quality data and show that, surprisingly, the learning-agnostic feature of our framework enables a significant improvement over SOTA performance while being orders of magnitude faster.

We consider a distributed coding for computing problem with constant decoding locality, i.e. with a vanishing error probability, any single sample of the function can be approximately recovered by probing only constant number of compressed bits. We establish an achievable rate region by designing an efficient coding scheme. The scheme reduces the required rate by introducing auxiliary random variables and supports local decoding at the same time. Then we show the rate region is optimal under mild regularity conditions on source distributions. A coding for computing problem with side information is analogously studied. These results indicate that more rate has to be taken in order to achieve lower coding complexity in distributed computing settings. Moreover, useful graph characterizations are developed to simplify the computation of the achievable rate region.

We propose a new framework to design and analyze accelerated methods that solve general monotone equation (ME) problems $F(x)=0$. Traditional approaches include generalized steepest descent methods and inexact Newton-type methods. If $F$ is uniformly monotone and twice differentiable, these methods achieve local convergence rates while the latter methods are globally convergent thanks to line search and hyperplane projection. However, a global rate is unknown for these methods. The variational inequality methods can be applied to yield a global rate that is expressed in terms of $\|F(x)\|$ but these results are restricted to first-order methods and a Lipschitz continuous operator. It has not been clear how to obtain global acceleration using high-order Lipschitz continuity. This paper takes a continuous-time perspective where accelerated methods are viewed as the discretization of dynamical systems. Our contribution is to propose accelerated rescaled gradient systems and prove that they are equivalent to closed-loop control systems. Based on this connection, we establish the properties of solution trajectories. Moreover, we provide a unified algorithmic framework obtained from discretization of our system, which together with two approximation subroutines yields both existing high-order methods and new first-order methods. We prove that the $p^{th}$-order method achieves a global rate of $O(k^{-p/2})$ in terms of $\|F(x)\|$ if $F$ is $p^{th}$-order Lipschitz continuous and the first-order method achieves the same rate if $F$ is $p^{th}$-order strongly Lipschitz continuous. If $F$ is strongly monotone, the restarted versions achieve local convergence with order $p$ when $p \geq 2$. Our discrete-time analysis is largely motivated by the continuous-time analysis and demonstrates the fundamental role that rescaled gradients play in global acceleration for solving ME problems.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

Pre-trained models learn contextualized word representations on large-scale text corpus through a self-supervised learning method, which has achieved promising performance after fine-tuning. These models, however, suffer from poor robustness and lack of interpretability. Pre-trained models with knowledge injection, which we call knowledge enhanced pre-trained models (KEPTMs), possess deep understanding and logical reasoning and introduce interpretability to some extent. In this survey, we provide a comprehensive overview of KEPTMs for natural language processing. We first introduce the progress of pre-trained models and knowledge representation learning. Then we systematically categorize existing KEPTMs from three different perspectives. Finally, we outline some potential directions of KEPTMs for future research.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

北京阿比特科技有限公司