亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the context of label-efficient learning on video data, the distillation method and the structural design of the teacher-student architecture have a significant impact on knowledge distillation. However, the relationship between these factors has been overlooked in previous research. To address this gap, we propose a new weakly supervised learning framework for knowledge distillation in video classification that is designed to improve the efficiency and accuracy of the student model. Our approach leverages the concept of substage-based learning to distill knowledge based on the combination of student substages and the correlation of corresponding substages. We also employ the progressive cascade training method to address the accuracy loss caused by the large capacity gap between the teacher and the student. Additionally, we propose a pseudo-label optimization strategy to improve the initial data label. To optimize the loss functions of different distillation substages during the training process, we introduce a new loss method based on feature distribution. We conduct extensive experiments on both real and simulated data sets, demonstrating that our proposed approach outperforms existing distillation methods in terms of knowledge distillation for video classification tasks. Our proposed substage-based distillation approach has the potential to inform future research on label-efficient learning for video data.

相關內容

Significant advances in utilizing deep learning for anomaly detection have been made in recent years. However, these methods largely assume the existence of a normal training set (i.e., uncontaminated by anomalies) or even a completely labeled training set. In many complex engineering systems, such as particle accelerators, labels are sparse and expensive; in order to perform anomaly detection in these cases, we must drop these assumptions and utilize a completely unsupervised method. This paper introduces the Resilient Variational Autoencoder (ResVAE), a deep generative model specifically designed for anomaly detection. ResVAE exhibits resilience to anomalies present in the training data and provides feature-level anomaly attribution. During the training process, ResVAE learns the anomaly probability for each sample as well as each individual feature, utilizing these probabilities to effectively disregard anomalous examples in the training data. We apply our proposed method to detect anomalies in the accelerator status at the SLAC Linac Coherent Light Source (LCLS). By utilizing shot-to-shot data from the beam position monitoring system, we demonstrate the exceptional capability of ResVAE in identifying various types of anomalies that are visible in the accelerator.

The vulnerabilities to backdoor attacks have recently threatened the trustworthiness of machine learning models in practical applications. Conventional wisdom suggests that not everyone can be an attacker since the process of designing the trigger generation algorithm often involves significant effort and extensive experimentation to ensure the attack's stealthiness and effectiveness. Alternatively, this paper shows that there exists a more severe backdoor threat: anyone can exploit an easily-accessible algorithm for silent backdoor attacks. Specifically, this attacker can employ the widely-used lossy image compression from a plethora of compression tools to effortlessly inject a trigger pattern into an image without leaving any noticeable trace; i.e., the generated triggers are natural artifacts. One does not require extensive knowledge to click on the "convert" or "save as" button while using tools for lossy image compression. Via this attack, the adversary does not need to design a trigger generator as seen in prior works and only requires poisoning the data. Empirically, the proposed attack consistently achieves 100% attack success rate in several benchmark datasets such as MNIST, CIFAR-10, GTSRB and CelebA. More significantly, the proposed attack can still achieve almost 100% attack success rate with very small (approximately 10%) poisoning rates in the clean label setting. The generated trigger of the proposed attack using one lossy compression algorithm is also transferable across other related compression algorithms, exacerbating the severity of this backdoor threat. This work takes another crucial step toward understanding the extensive risks of backdoor attacks in practice, urging practitioners to investigate similar attacks and relevant backdoor mitigation methods.

With the development of computational fluid dynamics, the requirements for the fluid simulation accuracy in industrial applications have also increased. The quality of the generated mesh directly affects the simulation accuracy. However, previous mesh quality metrics and models cannot evaluate meshes comprehensively and objectively. To this end, we propose MQENet, a structured mesh quality evaluation neural network based on dynamic graph attention. MQENet treats the mesh evaluation task as a graph classification task for classifying the quality of the input structured mesh. To make graphs generated from structured meshes more informative, MQENet introduces two novel structured mesh preprocessing algorithms. These two algorithms can also improve the conversion efficiency of structured mesh data. Experimental results on the benchmark structured mesh dataset NACA-Market show the effectiveness of MQENet in the mesh quality evaluation task.

Deep learning models have revolutionized the field of medical image analysis, offering significant promise for improved diagnostics and patient care. However, their performance can be misleadingly optimistic due to a hidden pitfall called 'data leakage'. In this study, we investigate data leakage in 3D medical imaging, specifically using 3D Convolutional Neural Networks (CNNs) for brain MRI analysis. While 3D CNNs appear less prone to leakage than 2D counterparts, improper data splitting during cross-validation (CV) can still pose issues, especially with longitudinal imaging data containing repeated scans from the same subject. We explore the impact of different data splitting strategies on model performance for longitudinal brain MRI analysis and identify potential data leakage concerns. GradCAM visualization helps reveal shortcuts in CNN models caused by identity confounding, where the model learns to identify subjects along with diagnostic features. Our findings, consistent with prior research, underscore the importance of subject-wise splitting and evaluating our model further on hold-out data from different subjects to ensure the integrity and reliability of deep learning models in medical image analysis.

This study introduces an efficient and effective method, MeDM, that utilizes pre-trained image Diffusion Models for video-to-video translation with consistent temporal flow. The proposed framework can render videos from scene position information, such as a normal G-buffer, or perform text-guided editing on videos captured in real-world scenarios. We employ explicit optical flows to construct a practical coding that enforces physical constraints on generated frames and mediates independent frame-wise scores. By leveraging this coding, maintaining temporal consistency in the generated videos can be framed as an optimization problem with a closed-form solution. To ensure compatibility with Stable Diffusion, we also suggest a workaround for modifying observed-space scores in latent-space Diffusion Models. Notably, MeDM does not require fine-tuning or test-time optimization of the Diffusion Models. Through extensive qualitative, quantitative, and subjective experiments on various benchmarks, the study demonstrates the effectiveness and superiority of the proposed approach. Project page can be found at //medm2023.github.io

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain the predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we generate a set of benchmark graph datasets specifically for GNN explainability. We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.

北京阿比特科技有限公司