亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present RetailOpt, a novel opt-in, easy-to-deploy system for tracking customer movements in indoor retail environments. The system utilizes information presently accessible to customers through smartphones and retail apps: motion data, store map, and purchase records. The approach eliminates the need for additional hardware installations/maintenance and ensures customers maintain full control of their data. Specifically, RetailOpt first employs inertial navigation to recover relative trajectories from smartphone motion data. The store map and purchase records are then cross-referenced to identify a list of visited shelves, providing anchors to localize the relative trajectories in a store through continuous and discrete optimization. We demonstrate the effectiveness of our system through systematic experiments in five diverse environments. The proposed system, if successful, would produce accurate customer movement data, essential for a broad range of retail applications, including customer behavior analysis and in-store navigation. The potential application could also extend to other domains such as entertainment and assistive technologies.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 大語言模型 · MoDELS · Performer · 可理解性 ·
2024 年 6 月 2 日

Large Language Models (LLMs) demonstrate remarkable proficiency in comprehending and handling text-based tasks. Many efforts are being made to transfer these attributes to video modality, which are termed Video-LLMs. However, existing Video-LLMs can only capture the coarse-grained semantics and are unable to effectively handle tasks related to comprehension or localization of specific video segments. In light of these challenges, we propose Momentor, a Video-LLM capable of accomplishing fine-grained temporal understanding tasks. To support the training of Momentor, we design an automatic data generation engine to construct Moment-10M, a large-scale video instruction dataset with segment-level instruction data. We train Momentor on Moment-10M, enabling it to perform segment-level reasoning and localization. Zero-shot evaluations on several tasks demonstrate that Momentor excels in fine-grained temporally grounded comprehension and localization.

In an era of rapidly advancing data-driven applications, there is a growing demand for data in both research and practice. Synthetic data have emerged as an alternative when no real data is available (e.g., due to privacy regulations). Synthesizing tabular data presents unique and complex challenges, especially handling (i) missing values, (ii) dataset imbalance, (iii) diverse column types, and (iv) complex data distributions, as well as preserving (i) column correlations, (ii) temporal dependencies, and (iii) integrity constraints (e.g., functional dependencies) present in the original dataset. While substantial progress has been made recently in the context of generational models, there is no one-size-fits-all solution for tabular data today, and choosing the right tool for a given task is therefore no trivial task. In this paper, we survey the state of the art in Tabular Data Synthesis (TDS), examine the needs of users by defining a set of functional and non-functional requirements, and compile the challenges associated with meeting those needs. In addition, we evaluate the reported performance of 36 popular research TDS tools about these requirements and develop a decision guide to help users find suitable TDS tools for their applications. The resulting decision guide also identifies significant research gaps.

Massively multilingual sentence representation models, e.g., LASER, SBERT-distill, and LaBSE, help significantly improve cross-lingual downstream tasks. However, the use of a large amount of data or inefficient model architectures results in heavy computation to train a new model according to our preferred languages and domains. To resolve this issue, we introduce efficient and effective massively multilingual sentence embedding (EMS), using cross-lingual token-level reconstruction (XTR) and sentence-level contrastive learning as training objectives. Compared with related studies, the proposed model can be efficiently trained using significantly fewer parallel sentences and GPU computation resources. Empirical results showed that the proposed model significantly yields better or comparable results with regard to cross-lingual sentence retrieval, zero-shot cross-lingual genre classification, and sentiment classification. Ablative analyses demonstrated the efficiency and effectiveness of each component of the proposed model. We release the codes for model training and the EMS pre-trained sentence embedding model, which supports 62 languages ( //github.com/Mao-KU/EMS ).

Data is a critical resource for Machine Learning (ML), yet working with data remains a key friction point. This paper introduces Croissant, a metadata format for datasets that simplifies how data is used by ML tools and frameworks. Croissant makes datasets more discoverable, portable and interoperable, thereby addressing significant challenges in ML data management and responsible AI. Croissant is already supported by several popular dataset repositories, spanning hundreds of thousands of datasets, ready to be loaded into the most popular ML frameworks.

Cross-device training is a crucial subfield of federated learning, where the number of clients can reach into the billions. Standard approaches and local methods are prone to issues such as client drift and insensitivity to data similarities. We propose a novel algorithm (SPAM) for cross-device federated learning with non-convex losses, which solves both issues. We provide sharp analysis under second-order (Hessian) similarity, a condition satisfied by a variety of machine learning problems in practice. Additionally, we extend our results to the partial participation setting, where a cohort of selected clients communicate with the server at each communication round. Our method is the first in its kind, that does not require the smoothness of the objective and provably benefits from clients having similar data.

Autonomous systems, such as self-driving cars, rely on reliable semantic environment perception for decision making. Despite great advances in video semantic segmentation, existing approaches ignore important inductive biases and lack structured and interpretable internal representations. In this work, we propose MCDS-VSS, a structured filter model that learns in a self-supervised manner to estimate scene geometry and ego-motion of the camera, while also estimating the motion of external objects. Our model leverages these representations to improve the temporal consistency of semantic segmentation without sacrificing segmentation accuracy. MCDS-VSS follows a prediction-fusion approach in which scene geometry and camera motion are first used to compensate for ego-motion, then residual flow is used to compensate motion of dynamic objects, and finally the predicted scene features are fused with the current features to obtain a temporally consistent scene segmentation. Our model parses automotive scenes into multiple decoupled interpretable representations such as scene geometry, ego-motion, and object motion. Quantitative evaluation shows that MCDS-VSS achieves superior temporal consistency on video sequences while retaining competitive segmentation performance.

Large language models(LLMs) have shown its outperforming ability on various tasks and question answering. However, LLMs require substantial memory storage on low-resource devices. More critically, the computational speed on these devices is also severely limited. In this paper, we propose SPA(Side Plugin Adaption), a lightweight architecture for fast on-devices inference on the constraints of strict on-devices computation and memory constraints. Compared with other on-devices seq2seq generation, SPA could make a fast and stable inference on low-resource constraints, allowing it to obtain cost effiency. Our method establish an interaction between a pretrained LLMs on-cloud and additive parameters on-devices, which could provide the knowledge on both pretrained LLMs and featured personal feature. Further more, SPA provides a framework to keep feature-base parameters on low computational devices while leave the parameters containing general information on the high computational devices.

We present VeriX, a first step towards verified explainability of machine learning models in safety-critical applications. Specifically, our sound and optimal explanations can guarantee prediction invariance against bounded perturbations. We utilise constraint solving techniques together with feature sensitivity ranking to efficiently compute these explanations. We evaluate our approach on image recognition benchmarks and a real-world scenario of autonomous aircraft taxiing.

Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

北京阿比特科技有限公司