The study of non-collapsing measurements was initiated by Aaronson, Bouland, Fitzsimons, and Lee, who showed that BQP, when equipped with the ability to perform non-collapsing measurements (denoted as PDQP), contains both BQP and SZK, yet still requires $\Omega (N^{1/4})$ queries to find an element in an unsorted list. By formulating an alternative equivalent model of PDQP, we prove the positive weighted adversary method, obtaining a variety of new lower bounds and establishing a trade-off between queries and non-collapsing measurements. The method allows us to examine the well-studied majority and element distinctness problems, while also tightening the bound for the search problem to $\Theta (N^{1/3})$. Additionally, we explore related settings, obtaining tight bounds in BQP with the ability to copy arbitrary states (called CBQP) and PDQP with non-adaptive queries.
Large Language Models (LLMs) have demonstrated remarkable capabilities on various tasks, while the further evolvement is limited to the lack of high-quality training data. In addition, traditional training approaches rely too much on expert-labeled data, setting an upper limit on the performance of LLMs. To address this issue, we propose a novel paradigm that enables LLMs to train itself by autonomously generating, cleaning, reviewing, and annotating data with preference information, named LANCE. Our approach demonstrates that LLMs can serve as continuous self-evolving data engineers, significantly reducing the time and cost of the post-training data construction process. Through iterative fine-tuning on different variants of the Qwen2, we validate the effectiveness of LANCE across various tasks, showing that it can continuously improve model performance and maintain high-quality data generation. Across eight benchmark dimensions, LANCE resulted in an average score enhancement of 3.36 for Qwen2-7B and 2.70 for Qwen2-7B-Instruct. This training paradigm with autonomous data construction not only reduces the reliance on human experts or external models but also ensures that the data aligns with human values and preferences, paving the way for the development of future superintelligent systems that can exceed human capabilities.
The use of Large Language Models (LLMs) in mathematical reasoning has become a cornerstone of related research, demonstrating the intelligence of these models and enabling potential practical applications through their advanced performance, such as in educational settings. Despite the variety of datasets and in-context learning algorithms designed to improve the ability of LLMs to automate mathematical problem solving, the lack of comprehensive benchmarking across different datasets makes it complicated to select an appropriate model for specific tasks. In this project, we present a benchmark that fairly compares seven state-of-the-art in-context learning algorithms for mathematical problem solving across five widely used mathematical datasets on four powerful foundation models. Furthermore, we explore the trade-off between efficiency and performance, highlighting the practical applications of LLMs for mathematical reasoning. Our results indicate that larger foundation models like GPT-4o and LLaMA 3-70B can solve mathematical reasoning independently from the concrete prompting strategy, while for smaller models the in-context learning approach significantly influences the performance. Moreover, the optimal prompt depends on the chosen foundation model. We open-source our benchmark code to support the integration of additional models in future research.
The objective of this research is to optimize the eleventh iteration of You Only Look Once (YOLOv11) by developing size-specific modified versions of the architecture. These modifications involve pruning unnecessary layers and reconfiguring the main architecture of YOLOv11. Each proposed version is tailored to detect objects of specific size ranges, from small to large. To ensure proper model selection based on dataset characteristics, we introduced an object classifier program. This program identifies the most suitable modified version for a given dataset. The proposed models were evaluated on various datasets and compared with the original YOLOv11 and YOLOv8 models. The experimental results highlight significant improvements in computational resource efficiency, with the proposed models maintaining the accuracy of the original YOLOv11. In some cases, the modified versions outperformed the original model regarding detection performance. Furthermore, the proposed models demonstrated reduced model sizes and faster inference times. Models weights and the object size classifier can be found in this repository
Micro-Action Recognition (MAR) has gained increasing attention due to its crucial role as a form of non-verbal communication in social interactions, with promising potential for applications in human communication and emotion analysis. However, current approaches often overlook the inherent ambiguity in micro-actions, which arises from the wide category range and subtle visual differences between categories. This oversight hampers the accuracy of micro-action recognition. In this paper, we propose a novel Prototypical Calibrating Ambiguous Network (\textbf{PCAN}) to unleash and mitigate the ambiguity of MAR. \textbf{Firstly}, we employ a hierarchical action-tree to identify the ambiguous sample, categorizing them into distinct sets of ambiguous samples of false negatives and false positives, considering both body- and action-level categories. \textbf{Secondly}, we implement an ambiguous contrastive refinement module to calibrate these ambiguous samples by regulating the distance between ambiguous samples and their corresponding prototypes. This calibration process aims to pull false negative ($\mathbb{FN}$) samples closer to their respective prototypes and push false positive ($\mathbb{FP}$) samples apart from their affiliated prototypes. In addition, we propose a new prototypical diversity amplification loss to strengthen the model's capacity by amplifying the differences between different prototypes. \textbf{Finally}, we propose a prototype-guided rectification to rectify prediction by incorporating the representability of prototypes. Extensive experiments conducted on the benchmark dataset demonstrate the superior performance of our method compared to existing approaches. The code is available at //github.com/kunli-cs/PCAN.
The Retrieval-Augmented Language Model (RALM) has shown remarkable performance on knowledge-intensive tasks by incorporating external knowledge during inference, which mitigates the factual hallucinations inherited in large language models (LLMs). Despite these advancements, challenges persist in the implementation of RALMs, particularly concerning their reliability and traceability. To be specific, the irrelevant document retrieval may result in unhelpful response generation or even deteriorate the performance of LLMs, while the lack of proper citations in generated outputs complicates efforts to verify the trustworthiness of the models. To this end, we propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs, whose core idea is to leverage reasoning trajectories generated by the LLM itself. The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process. We have evaluated our framework across four public datasets (two short-form QA datasets, one long-form QA dataset, and one fact verification dataset) to demonstrate the superiority of our method, which can outperform existing state-of-the-art models and can achieve comparable performance with GPT-4, while only using 2,000 training samples.
We introduce a method for performing cross-validation without sample splitting. The method is well-suited for problems where traditional sample splitting is infeasible, such as when data are not assumed to be independently and identically distributed. Even in scenarios where sample splitting is possible, our method offers a computationally efficient alternative for estimating prediction error, achieving comparable or even lower error than standard cross-validation at a significantly reduced computational cost. Our approach constructs train-test data pairs using externally generated Gaussian randomization variables, drawing inspiration from recent randomization techniques such as data-fission and data-thinning. The key innovation lies in a carefully designed correlation structure among these randomization variables, referred to as antithetic Gaussian randomization. This correlation is crucial in maintaining a bounded variance while allowing the bias to vanish, offering an additional advantage over standard cross-validation, whose performance depends heavily on the bias-variance tradeoff dictated by the number of folds. We provide a theoretical analysis of the mean squared error of the proposed estimator, proving that as the level of randomization decreases to zero, the bias converges to zero, while the variance remains bounded and decays linearly with the number of repetitions. This analysis highlights the benefits of the antithetic Gaussian randomization over independent randomization. Simulation studies corroborate our theoretical findings, illustrating the robust performance of our cross-validated estimator across various data types and loss functions.
Photoacoustic imaging (PAI) suffers from inherent limitations that can degrade the quality of reconstructed results, such as noise, artifacts and incomplete data acquisition caused by sparse sampling or partial array detection. In this study, we proposed a new optimization method for both two-dimensional (2D) and three-dimensional (3D) PAI reconstruction results, called the regularized iteration method with shape prior. The shape prior is a probability matrix derived from the reconstruction results of multiple sets of random partial array signals in a computational imaging system using any reconstruction algorithm, such as Delay-and-Sum (DAS) and Back-Projection (BP). In the probability matrix, high-probability locations indicate high consistency among multiple reconstruction results at those positions, suggesting a high likelihood of representing the true imaging results. In contrast, low-probability locations indicate higher randomness, leaning more towards noise or artifacts. As a shape prior, this probability matrix guides the iteration and regularization of the entire array signal reconstruction results using the original reconstruction algorithm (the same algorithm for processing random partial array signals). The method takes advantage of the property that the similarity of the object to be imitated is higher than that of noise or artifact in the results reconstructed by multiple sets of random partial array signals of the entire imaging system. The probability matrix is taken as a prerequisite for improving the original reconstruction results, and the optimizer is used to further iterate the imaging results to remove noise and artifacts and improve the imaging fidelity. Especially in the case involving sparse view which brings more artifacts, the effect is remarkable. Simulation and real experiments have both demonstrated the superiority of this method.
Knowledge utilization is a critical aspect of LLMs, and understanding how they adapt to evolving knowledge is essential for their effective deployment. However, existing benchmarks are predominantly static, failing to capture the evolving nature of LLMs and knowledge, leading to inaccuracies and vulnerabilities such as contamination. In this paper, we introduce EvoWiki, an evolving dataset designed to reflect knowledge evolution by categorizing information into stable, evolved, and uncharted states. EvoWiki is fully auto-updatable, enabling precise evaluation of continuously changing knowledge and newly released LLMs. Through experiments with Retrieval-Augmented Generation (RAG) and Contunual Learning (CL), we evaluate how effectively LLMs adapt to evolving knowledge. Our results indicate that current models often struggle with evolved knowledge, frequently providing outdated or incorrect responses. Moreover, the dataset highlights a synergistic effect between RAG and CL, demonstrating their potential to better adapt to evolving knowledge. EvoWiki provides a robust benchmark for advancing future research on the knowledge evolution capabilities of large language models.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.