亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A query game is a pair of a set $Q$ of queries and a set $\mathcal{F}$ of functions, or codewords $f:Q\rightarrow \mathbb{Z}.$ We think of this as a two-player game. One player, Codemaker, picks a hidden codeword $f\in \mathcal{F}$. The other player, Codebreaker, then tries to determine $f$ by asking a sequence of queries $q\in Q$, after each of which Codemaker must respond with the value $f(q)$. The goal of Codebreaker is to uniquely determine $f$ using as few queries as possible. Two classical examples of such games are coin-weighing with a spring scale, and Mastermind, which are of interest both as recreational games and for their connection to information theory. In this paper, we will present a general framework for finding short solutions to query games. As applications, we give new self-contained proofs of the query complexity of variations of the coin-weighing problems, and prove new results that the deterministic query complexity of Mastermind with $n$ positions and $k$ colors is $\Theta(n \log k/ \log n + k)$ if only black-peg information is provided, and $\Theta(n \log k / \log n + k/n)$ if both black- and white-peg information is provided. In the deterministic setting, these are the first up to constant factor optimal solutions to Mastermind known for any $k\geq n^{1-o(1)}$.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 隨機初始化 · UniFormer · Lipschitz · SimPLe ·
2023 年 5 月 11 日

We consider alternating gradient descent (AGD) with fixed step size $\eta > 0$, applied to the asymmetric matrix factorization objective. We show that, for a rank-$r$ matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, $T = \left( \left(\frac{\sigma_1(\mathbf{A})}{\sigma_r(\mathbf{A})}\right)^2 \log(1/\epsilon)\right)$ iterations of alternating gradient descent suffice to reach an $\epsilon$-optimal factorization $\| \mathbf{A} - \mathbf{X}_T^{\vphantom{\intercal}} \mathbf{Y}_T^{\intercal} \|_{\rm F}^2 \leq \epsilon \| \mathbf{A} \|_{\rm F}^2$ with high probability starting from an atypical random initialization. The factors have rank $d>r$ so that $\mathbf{X}_T\in\mathbb{R}^{m \times d}$ and $\mathbf{Y}_T \in\mathbb{R}^{n \times d}$. Experiments suggest that our proposed initialization is not merely of theoretical benefit, but rather significantly improves convergence of gradient descent in practice. Our proof is conceptually simple: a uniform PL-inequality and uniform Lipschitz smoothness constant are guaranteed for a sufficient number of iterations, starting from our random initialization. Our proof method should be useful for extending and simplifying convergence analyses for a broader class of nonconvex low-rank factorization problems.

This paper investigates Distributed Hypothesis testing (DHT), in which a source $\mathbf{X}$ is encoded given that side information $\mathbf{Y}$ is available at the decoder only. Based on the received coded data, the receiver aims to decide on the two hypotheses $H_0$ or $H_1$ related to the joint distribution of $\mathbf{X}$ and $\mathbf{Y}$. While most existing contributions in the literature on DHT consider i.i.d. assumptions, this paper assumes more generic, non-i.i.d., non-stationary, and non-ergodic sources models. It relies on information-spectrum tools to provide general formulas on the achievable Type-II error exponent under a constraint on the Type-I error. The achievability proof is based on a quantize-and-binning scheme. It is shown that with the quantize-and-binning approach, the error exponent boils down to a trade-off between a binning error and a decision error, as already observed for the i.i.d. sources. The last part of the paper provides error exponents for particular source models, \emph{e.g.}, Gaussian, stationary, and ergodic models.

We show the convergence of Wasserstein inverse reinforcement learning (WIRL) for multi-objective optimizations with the projective subgradient method by formulating an inverse problem of the optimization problem that is equivalent to WIRL for multi-objective optimizations. In addition, we prove convergence of inverse reinforcement learning (maximum entropy inverse reinforcement learning, guid cost learning) for multi-objective optimization with the projective subgradient method.

Numerical methods for the optimal feedback control of high-dimensional dynamical systems typically suffer from the curse of dimensionality. In the current presentation, we devise a mesh-free data-based approximation method for the value function of optimal control problems, which partially mitigates the dimensionality problem. The method is based on a greedy Hermite kernel interpolation scheme and incorporates context-knowledge by its structure. Especially, the value function surrogate is elegantly enforced to be 0 in the target state, non-negative and constructed as a correction of a linearized model. The algorithm is proposed in a matrix-free way, which circumvents the large-matrix-problem for multivariate Hermite interpolation. For finite time horizons, both convergence of the surrogate to the value function as well as for the surrogate vs. the optimal controlled dynamical system are proven. Experiments support the effectiveness of the scheme, using among others a new academic model that has a scalable dimension and an explicitly given value function. It may also be useful for the community to validate other optimal control approaches.

The Dirichlet process has been pivotal to the development of Bayesian nonparametrics, allowing one to learn the law of the observations through closed-form expressions. Still, its learning mechanism is often too simplistic and many generalizations have been proposed to increase its flexibility, a popular one being the class of normalized completely random measures. Here we investigate a simple yet fundamental matter: will a different prior actually guarantee a different learning outcome? To this end, we develop a new framework for assessing the merging rate of opinions based on three leading pillars: i) the investigation of identifiability of completely random measures; ii) the measurement of their discrepancy through a novel optimal transport distance; iii) the establishment of general techniques to conduct posterior analyses, unravelling both finite-sample and asymptotic behaviour of the distance as the number of observations grows. Our findings provide neat and interpretable insights on the impact of popular Bayesian nonparametric priors, avoiding the usual restrictive assumptions on the data-generating process.

Reinforcement learning (RL) problems over general state and action spaces are notoriously challenging. In contrast to the tableau setting, one can not enumerate all the states and then iteratively update the policies for each state. This prevents the application of many well-studied RL methods especially those with provable convergence guarantees. In this paper, we first present a substantial generalization of the recently developed policy mirror descent method to deal with general state and action spaces. We introduce new approaches to incorporate function approximation into this method, so that we do not need to use explicit policy parameterization at all. Moreover, we present a novel policy dual averaging method for which possibly simpler function approximation techniques can be applied. We establish linear convergence rate to global optimality or sublinear convergence to stationarity for these methods applied to solve different classes of RL problems under exact policy evaluation. We then define proper notions of the approximation errors for policy evaluation and investigate their impact on the convergence of these methods applied to general-state RL problems with either finite-action or continuous-action spaces. To the best of our knowledge, the development of these algorithmic frameworks as well as their convergence analysis appear to be new in the literature.

We consider problems of minimizing functionals $\mathcal{F}$ of probability measures on the Euclidean space. To propose an accelerated gradient descent algorithm for such problems, we consider gradient flow of transport maps that give push-forward measures of an initial measure. Then we propose a deterministic accelerated algorithm by extending Nesterov's acceleration technique with momentum. This algorithm do not based on the Wasserstein geometry. Furthermore, to estimate the convergence rate of the accelerated algorithm, we introduce new convexity and smoothness for $\mathcal{F}$ based on transport maps. As a result, we can show that the accelerated algorithm converges faster than a normal gradient descent algorithm. Numerical experiments support this theoretical result.

It is often desirable to summarise a probability measure on a space $X$ in terms of a mode, or MAP estimator, i.e.\ a point of maximum probability. Such points can be rigorously defined using masses of metric balls in the small-radius limit. However, the theory is not entirely straightforward: the literature contains multiple notions of mode and various examples of pathological measures that have no mode in any sense. Since the masses of balls induce natural orderings on the points of $X$, this article aims to shed light on some of the problems in non-parametric MAP estimation by taking an order-theoretic perspective, which appears to be a new one in the inverse problems community. This point of view opens up attractive proof strategies based upon the Cantor and Kuratowski intersection theorems; it also reveals that many of the pathologies arise from the distinction between greatest and maximal elements of an order, and from the existence of incomparable elements of $X$, which we show can be dense in $X$, even for an absolutely continuous measure on $X = \mathbb{R}$.

The visualization community regards visualization literacy as a necessary skill. Yet, despite the recent increase in research into visualization literacy by the education and visualization communities, we lack practical and time-effective instruments for the widespread measurements of people's comprehension and interpretation of visual designs. We present Mini-VLAT, a brief but practical visualization literacy test. The Mini-VLAT is a 12-item short form of the 53-item Visualization Literacy Assessment Test (VLAT). The Mini-VLAT is reliable (coefficient omega = 0.72) and strongly correlates with the VLAT. Five visualization experts validated the Mini-VLAT items, yielding an average content validity ratio (CVR) of 0.6. We further validate Mini-VLAT by demonstrating a strong positive correlation between study participants' Mini-VLAT scores and their aptitude for learning an unfamiliar visualization using a Parallel Coordinate Plot test. Overall, the Mini-VLAT items showed a similar pattern of validity and reliability as the 53-item VLAT. The results show that Mini-VLAT is a psychometrically sound and practical short measure of visualization literacy.

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.

北京阿比特科技有限公司