The growing reliance on online services underscores the crucial role of recommendation systems, especially on social media platforms seeking increased user engagement. This study investigates how recommendation systems influence the impact of personal behavioral traits on social network dynamics. It explores the interplay between homophily, users' openness to novel ideas, and recommendation-driven exposure to new opinions. Additionally, the research examines the impact of recommendation systems on the diversity of newly generated ideas, shedding light on the challenges and opportunities in designing effective systems that balance the exploration of new ideas with the risk of reinforcing biases or filtering valuable, unconventional concepts.
We present a novel method for explainable vertebral fracture assessment (XVFA) in low-dose radiographs using deep neural networks, incorporating vertebra detection and keypoint localization with uncertainty estimates. We incorporate Genant's semi-quantitative criteria as a differentiable rule-based means of classifying both vertebra fracture grade and morphology. Unlike previous work, XVFA provides explainable classifications relatable to current clinical methodology, as well as uncertainty estimations, while at the same time surpassing state-of-the art methods with a vertebra-level sensitivity of 93% and end-to-end AUC of 97% in a challenging setting. Moreover, we compare intra-reader agreement with model uncertainty estimates, with model reliability on par with human annotators.
Today, hate speech classification from Arabic tweets has drawn the attention of several researchers. Many systems and techniques have been developed to resolve this classification task. Nevertheless, two of the major challenges faced in this context are the limited performance and the problem of imbalanced data. In this study, we propose a novel approach that leverages ensemble learning and semi-supervised learning based on previously manually labeled. We conducted experiments on a benchmark dataset by classifying Arabic tweets into 5 distinct classes: non-hate, general hate, racial, religious, or sexism. Experimental results show that: (1) ensemble learning based on pre-trained language models outperforms existing related works; (2) Our proposed data augmentation improves the accuracy results of hate speech detection from Arabic tweets and outperforms existing related works. Our main contribution is the achievement of encouraging results in Arabic hate speech detection.
We consider reinforcement learning for continuous-time Markov decision processes (MDPs) in the infinite-horizon, average-reward setting. In contrast to discrete-time MDPs, a continuous-time process moves to a state and stays there for a random holding time after an action is taken. With unknown transition probabilities and rates of exponential holding times, we derive instance-dependent regret lower bounds that are logarithmic in the time horizon. Moreover, we design a learning algorithm and establish a finite-time regret bound that achieves the logarithmic growth rate. Our analysis builds upon upper confidence reinforcement learning, a delicate estimation of the mean holding times, and stochastic comparison of point processes.
Compared to widely used likelihood-based approaches, the minimum contrast (MC) method offers a computationally efficient method for estimation and inference of spatial point processes. These relative gains in computing time become more pronounced when analyzing complicated multivariate point process models. Despite this, there has been little exploration of the MC method for multivariate spatial point processes. Therefore, this article introduces a new MC method for parametric multivariate spatial point processes. A contrast function is computed based on the trace of the power of the difference between the conjectured $K$-function matrix and its nonparametric unbiased edge-corrected estimator. Under standard assumptions, we derive the asymptotic normality of our MC estimator. The performance of the proposed method is demonstrated through simulation studies of bivariate log-Gaussian Cox processes and five-variate product-shot-noise Cox processes.
Supervised machine learning methods for geological mapping via remote sensing face limitations due to the scarcity of accurately labelled training data that can be addressed by unsupervised learning, such as dimensionality reduction and clustering. Dimensionality reduction methods have the potential to play a crucial role in improving the accuracy of geological maps. Although conventional dimensionality reduction methods may struggle with nonlinear data, unsupervised deep learning models such as autoencoders can model non-linear relationships. Stacked autoencoders feature multiple interconnected layers to capture hierarchical data representations useful for remote sensing data. This study presents an unsupervised machine learning-based framework for processing remote sensing data using stacked autoencoders for dimensionality reduction and k-means clustering for mapping geological units. We use Landsat 8, ASTER, and Sentinel-2 datasets to evaluate the framework for geological mapping of the Mutawintji region in Western New South Wales, Australia. We also compare stacked autoencoders with principal component analysis and canonical autoencoders. Our results reveal that the framework produces accurate and interpretable geological maps, efficiently discriminating rock units. We find that the accuracy of stacked autoencoders ranges from 86.6 % to 90 %, depending on the remote sensing data type, which is superior to their counterparts. We also find that the generated maps align with prior geological knowledge of the study area while providing novel insights into geological structures.
We investigate the proof complexity of systems based on positive branching programs, i.e. non-deterministic branching programs (NBPs) where, for any 0-transition between two nodes, there is also a 1-transition. Positive NBPs compute monotone Boolean functions, just like negation-free circuits or formulas, but constitute a positive version of (non-uniform) NL, rather than P or NC1, respectively. The proof complexity of NBPs was investigated in previous work by Buss, Das and Knop, using extension variables to represent the dag-structure, over a language of (non-deterministic) decision trees, yielding the system eLNDT. Our system eLNDT+ is obtained by restricting their systems to a positive syntax, similarly to how the 'monotone sequent calculus' MLK is obtained from the usual sequent calculus LK by restricting to negation-free formulas. Our main result is that eLNDT+ polynomially simulates eLNDT over positive sequents. Our proof method is inspired by a similar result for MLK by Atserias, Galesi and Pudl\'ak, that was recently improved to a bona fide polynomial simulation via works of Je\v{r}\'abek and Buss, Kabanets, Kolokolova and Kouck\'y. Along the way we formalise several properties of counting functions within eLNDT+ by polynomial-size proofs and, as a case study, give explicit polynomial-size poofs of the propositional pigeonhole principle.
Understanding the emergence of data breaches is crucial for cyber insurance. However, analyses of data breach frequency trends in the current literature lead to contradictory conclusions. We put forward that those discrepancies may be (at least partially) due to inconsistent data collection standards, as well as reporting patterns, over time and space. We set out to carefully control both. In this paper, we conduct a joint analysis of state Attorneys General's publications on data breaches across eight states (namely, California, Delaware, Indiana, Maine, Montana, North Dakota, Oregon, and Washington), all of which are subject to established data collection standards-namely, state data breach (mandatory) notification laws. Thanks to our explicit recognition of these notification laws, we are capable of modelling frequency of breaches in a consistent and comparable way over time. Hence, we are able to isolate and capture the complexities of reporting patterns, adequately estimate IBNRs, and yield a highly reliable assessment of historical frequency trends in data breaches. Our analysis also provides a comprehensive comparison of data breach frequency across the eight U.S. states, extending knowledge on state-specific differences in cyber risk, which has not been extensively discussed in the current literature. Furthermore, we uncover novel features not previously discussed in the literature, such as differences in cyber risk frequency trends between large and small data breaches. Overall, we find that the reporting delays are lengthening. We also elicit commonalities and heterogeneities in reporting patterns across states, severity levels, and time periods. After adequately estimating IBNRs, we find that frequency is relatively stable before 2020 and increasing after 2020. This is consistent across states. Implications of our findings for cyber insurance are discussed.
This paper develops and analyzes an accelerated proximal descent method for finding stationary points of nonconvex composite optimization problems. The objective function is of the form $f+h$ where $h$ is a proper closed convex function, $f$ is a differentiable function on the domain of $h$, and $\nabla f$ is Lipschitz continuous on the domain of $h$. The main advantage of this method is that it is "parameter-free" in the sense that it does not require knowledge of the Lipschitz constant of $\nabla f$ or of any global topological properties of $f$. It is shown that the proposed method can obtain an $\varepsilon$-approximate stationary point with iteration complexity bounds that are optimal, up to logarithmic terms over $\varepsilon$, in both the convex and nonconvex settings. Some discussion is also given about how the proposed method can be leveraged in other existing optimization frameworks, such as min-max smoothing and penalty frameworks for constrained programming, to create more specialized parameter-free methods. Finally, numerical experiments are presented to support the practical viability of the method.
In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.