Filter pruning has been widely used for neural network compression because of its enabled practical acceleration. To date, most of the existing filter pruning works explore the importance of filters via using intra-channel information. In this paper, starting from an inter-channel perspective, we propose to perform efficient filter pruning using Channel Independence, a metric that measures the correlations among different feature maps. The less independent feature map is interpreted as containing less useful information$/$knowledge, and hence its corresponding filter can be pruned without affecting model capacity. We systematically investigate the quantification metric, measuring scheme and sensitiveness$/$reliability of channel independence in the context of filter pruning. Our evaluation results for different models on various datasets show the superior performance of our approach. Notably, on CIFAR-10 dataset our solution can bring $0.75\%$ and $0.94\%$ accuracy increase over baseline ResNet-56 and ResNet-110 models, respectively, and meanwhile the model size and FLOPs are reduced by $42.8\%$ and $47.4\%$ (for ResNet-56) and $48.3\%$ and $52.1\%$ (for ResNet-110), respectively. On ImageNet dataset, our approach can achieve $40.8\%$ and $44.8\%$ storage and computation reductions, respectively, with $0.15\%$ accuracy increase over the baseline ResNet-50 model. The code is available at //github.com/Eclipsess/CHIP_NeurIPS2021.
This paper proposes an Information Bottleneck theory based filter pruning method that uses a statistical measure called Mutual Information (MI). The MI between filters and class labels, also called \textit{Relevance}, is computed using the filter's activation maps and the annotations. The filters having High Relevance (HRel) are considered to be more important. Consequently, the least important filters, which have lower Mutual Information with the class labels, are pruned. Unlike the existing MI based pruning methods, the proposed method determines the significance of the filters purely based on their corresponding activation map's relationship with the class labels. Architectures such as LeNet-5, VGG-16, ResNet-56\textcolor{myblue}{, ResNet-110 and ResNet-50 are utilized to demonstrate the efficacy of the proposed pruning method over MNIST, CIFAR-10 and ImageNet datasets. The proposed method shows the state-of-the-art pruning results for LeNet-5, VGG-16, ResNet-56, ResNet-110 and ResNet-50 architectures. In the experiments, we prune 97.98 \%, 84.85 \%, 76.89\%, 76.95\%, and 63.99\% of Floating Point Operation (FLOP)s from LeNet-5, VGG-16, ResNet-56, ResNet-110, and ResNet-50 respectively.} The proposed HRel pruning method outperforms recent state-of-the-art filter pruning methods. Even after pruning the filters from convolutional layers of LeNet-5 drastically (i.e. from 20, 50 to 2, 3, respectively), only a small accuracy drop of 0.52\% is observed. Notably, for VGG-16, 94.98\% parameters are reduced, only with a drop of 0.36\% in top-1 accuracy. \textcolor{myblue}{ResNet-50 has shown a 1.17\% drop in the top-5 accuracy after pruning 66.42\% of the FLOPs.} In addition to pruning, the Information Plane dynamics of Information Bottleneck theory is analyzed for various Convolutional Neural Network architectures with the effect of pruning.
Deep neural network (DNN) model compression for efficient on-device inference is becoming increasingly important to reduce memory requirements and keep user data on-device. To this end, we propose a novel differentiable k-means clustering layer (DKM) and its application to train-time weight clustering-based DNN model compression. DKM casts k-means clustering as an attention problem and enables joint optimization of the DNN parameters and clustering centroids. Unlike prior works that rely on additional regularizers and parameters, DKM-based compression keeps the original loss function and model architecture fixed. We evaluated DKM-based compression on various DNN models for computer vision and natural language processing (NLP) tasks. Our results demonstrate that DKM delivers superior compression and accuracy trade-off on ImageNet1k and GLUE benchmarks. For example, DKM-based compression can offer 74.5% top-1 ImageNet1k accuracy on ResNet50 DNN model with 3.3MB model size (29.4x model compression factor). For MobileNet-v1, which is a challenging DNN to compress, DKM delivers 63.9% top-1 ImageNet1k accuracy with 0.72 MB model size (22.4x model compression factor). This result is 6.8% higher top-1accuracy and 33% relatively smaller model size than the current state-of-the-art DNN compression algorithms. Additionally, DKM enables compression of DistilBERT model by 11.8x with minimal (1.1%) accuracy loss on GLUE NLP benchmarks.
Deep graph neural networks (GNNs) have achieved excellent results on various tasks on increasingly large graph datasets with millions of nodes and edges. However, memory complexity has become a major obstacle when training deep GNNs for practical applications due to the immense number of nodes, edges, and intermediate activations. To improve the scalability of GNNs, prior works propose smart graph sampling or partitioning strategies to train GNNs with a smaller set of nodes or sub-graphs. In this work, we study reversible connections, group convolutions, weight tying, and equilibrium models to advance the memory and parameter efficiency of GNNs. We find that reversible connections in combination with deep network architectures enable the training of overparameterized GNNs that significantly outperform existing methods on multiple datasets. Our models RevGNN-Deep (1001 layers with 80 channels each) and RevGNN-Wide (448 layers with 224 channels each) were both trained on a single commodity GPU and achieve an ROC-AUC of $87.74 \pm 0.13$ and $88.14 \pm 0.15$ on the ogbn-proteins dataset. To the best of our knowledge, RevGNN-Deep is the deepest GNN in the literature by one order of magnitude. Please visit our project website //www.deepgcns.org/arch/gnn1000 for more information.
Neural architecture search has attracted wide attentions in both academia and industry. To accelerate it, researchers proposed weight-sharing methods which first train a super-network to reuse computation among different operators, from which exponentially many sub-networks can be sampled and efficiently evaluated. These methods enjoy great advantages in terms of computational costs, but the sampled sub-networks are not guaranteed to be estimated precisely unless an individual training process is taken. This paper owes such inaccuracy to the inevitable mismatch between assembled network layers, so that there is a random error term added to each estimation. We alleviate this issue by training a graph convolutional network to fit the performance of sampled sub-networks so that the impact of random errors becomes minimal. With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates, which consequently leads to better performance of the final architecture. In addition, our approach also enjoys the flexibility of being used under different hardware constraints, since the graph convolutional network has provided an efficient lookup table of the performance of architectures in the entire search space.
Adder Neural Networks (ANNs) which only contain additions bring us a new way of developing deep neural networks with low energy consumption. Unfortunately, there is an accuracy drop when replacing all convolution filters by adder filters. The main reason here is the optimization difficulty of ANNs using $\ell_1$-norm, in which the estimation of gradient in back propagation is inaccurate. In this paper, we present a novel method for further improving the performance of ANNs without increasing the trainable parameters via a progressive kernel based knowledge distillation (PKKD) method. A convolutional neural network (CNN) with the same architecture is simultaneously initialized and trained as a teacher network, features and weights of ANN and CNN will be transformed to a new space to eliminate the accuracy drop. The similarity is conducted in a higher-dimensional space to disentangle the difference of their distributions using a kernel based method. Finally, the desired ANN is learned based on the information from both the ground-truth and teacher, progressively. The effectiveness of the proposed method for learning ANN with higher performance is then well-verified on several benchmarks. For instance, the ANN-50 trained using the proposed PKKD method obtains a 76.8\% top-1 accuracy on ImageNet dataset, which is 0.6\% higher than that of the ResNet-50.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.
Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled up for better accuracy if more resources are available. In this paper, we systematically study model scaling and identify that carefully balancing network depth, width, and resolution can lead to better performance. Based on this observation, we propose a new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient. We demonstrate the effectiveness of this method on scaling up MobileNets and ResNet. To go even further, we use neural architecture search to design a new baseline network and scale it up to obtain a family of models, called EfficientNets, which achieve much better accuracy and efficiency than previous ConvNets. In particular, our EfficientNet-B7 achieves state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy on ImageNet, while being 8.4x smaller and 6.1x faster on inference than the best existing ConvNet. Our EfficientNets also transfer well and achieve state-of-the-art accuracy on CIFAR-100 (91.7%), Flowers (98.8%), and 3 other transfer learning datasets, with an order of magnitude fewer parameters. Source code is at //github.com/tensorflow/tpu/tree/master/models/official/efficientnet.
With the widespread applications of deep convolutional neural networks (DCNNs), it becomes increasingly important for DCNNs not only to make accurate predictions but also to explain how they make their decisions. In this work, we propose a CHannel-wise disentangled InterPretation (CHIP) model to give the visual interpretation to the predictions of DCNNs. The proposed model distills the class-discriminative importance of channels in networks by utilizing the sparse regularization. Here, we first introduce the network perturbation technique to learn the model. The proposed model is capable to not only distill the global perspective knowledge from networks but also present the class-discriminative visual interpretation for specific predictions of networks. It is noteworthy that the proposed model is able to interpret different layers of networks without re-training. By combining the distilled interpretation knowledge in different layers, we further propose the Refined CHIP visual interpretation that is both high-resolution and class-discriminative. Experimental results on the standard dataset demonstrate that the proposed model provides promising visual interpretation for the predictions of networks in image classification task compared with existing visual interpretation methods. Besides, the proposed method outperforms related approaches in the application of ILSVRC 2015 weakly-supervised localization task.
Automatic neural architecture design has shown its potential in discovering powerful neural network architectures. Existing methods, no matter based on reinforcement learning or evolutionary algorithms (EA), conduct architecture search in a discrete space, which is highly inefficient. In this paper, we propose a simple and efficient method to automatic neural architecture design based on continuous optimization. We call this new approach neural architecture optimization (NAO). There are three key components in our proposed approach: (1) An encoder embeds/maps neural network architectures into a continuous space. (2) A predictor takes the continuous representation of a network as input and predicts its accuracy. (3) A decoder maps a continuous representation of a network back to its architecture. The performance predictor and the encoder enable us to perform gradient based optimization in the continuous space to find the embedding of a new architecture with potentially better accuracy. Such a better embedding is then decoded to a network by the decoder. Experiments show that the architecture discovered by our method is very competitive for image classification task on CIFAR-10 and language modeling task on PTB, outperforming or on par with the best results of previous architecture search methods with a significantly reduction of computational resources. Specifically we obtain $2.07\%$ test set error rate for CIFAR-10 image classification task and $55.9$ test set perplexity of PTB language modeling task. The best discovered architectures on both tasks are successfully transferred to other tasks such as CIFAR-100 and WikiText-2.
Currently, the neural network architecture design is mostly guided by the \emph{indirect} metric of computation complexity, i.e., FLOPs. However, the \emph{direct} metric, e.g., speed, also depends on the other factors such as memory access cost and platform characterics. Thus, this work proposes to evaluate the direct metric on the target platform, beyond only considering FLOPs. Based on a series of controlled experiments, this work derives several practical \emph{guidelines} for efficient network design. Accordingly, a new architecture is presented, called \emph{ShuffleNet V2}. Comprehensive ablation experiments verify that our model is the state-of-the-art in terms of speed and accuracy tradeoff.