亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern search engines are built on a stack of different components, including query understanding, retrieval, multi-stage ranking, and question answering, among others. These components are often optimized and deployed independently. In this paper, we introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM). All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts. This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack. To substantiate the feasibility of this framework, we present a series of proof-of-concept experiments and discuss the potential challenges associated with implementing this approach within real-world search systems.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 優化器 · Extensibility · on the fly · INTERACT ·
2023 年 12 月 8 日

In emerging scientific computing environments, matrix computations of increasing size and complexity are increasingly becoming prevalent. However, contemporary matrix language implementations are insufficient in their support for efficient utilization of cloud computing resources, particularly on the user side. We thus developed an extension of the Julia high-performance computation language such that matrix computations are automatically parallelized in the cloud, where users are separated from directly interacting with complex explicitly-parallel computations. We implement lazy evaluation semantics combined with directed graphs to optimize matrix operations on the fly while dynamic simulation finds the optimal tile size and schedule for a given cluster of cloud nodes. A time model prediction of the cluster's performance capacity is constructed to enable simulations. Automatic configuration of communication and worker processes on the cloud networks allow for the framework to automatically scale up for clusters of heterogeneous nodes. Our framework's experimental evaluation comprises eleven benchmarks on an fourteen node (564 CPUs) cluster in the AWS public cloud, revealing speedups of up to a factor of 5.1, with an average 74.39% of the upper bound for speedups.

Financial networks raise a significant computational challenge in identifying insolvent firms and evaluating their exposure to systemic risk. This task, known as the clearing problem, is computationally tractable when dealing with simple debt contracts. However under the presence of certain derivatives called credit default swaps (CDSes) the clearing problem is $\textsf{FIXP}$-complete. Existing techniques only show $\textsf{PPAD}$-hardness for finding an $\epsilon$-solution for the clearing problem with CDSes within an unspecified small range for $\epsilon$. We present significant progress in both facets of the clearing problem: (i) intractability of approximate solutions; (ii) algorithms and heuristics for computable solutions. Leveraging $\textsf{Pure-Circuit}$ (FOCS'22), we provide the first explicit inapproximability bound for the clearing problem involving CDSes. Our primal contribution is a reduction from $\textsf{Pure-Circuit}$ which establishes that finding approximate solutions is $\textsf{PPAD}$-hard within a range of roughly 5%. To alleviate the complexity of the clearing problem, we identify two meaningful restrictions of the class of financial networks motivated by regulations: (i) the presence of a central clearing authority; and (ii) the restriction to covered CDSes. We provide the following results: (i.) The $\textsf{PPAD}$-hardness of approximation persists when central clearing authorities are introduced; (ii.) An optimisation-based method for solving the clearing problem with central clearing authorities; (iii.) A polynomial-time algorithm when the two restrictions hold simultaneously.

Research progress in quantum computing has, thus far, focused on a narrow set of application domains. Expanding the suite of quantum application domains is vital for the discovery of new software toolchains and architectural abstractions. In this work, we unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling. Cognitive models are critical to understanding and replicating human intelligence. Our work connects computational cognitive models to quantum computer architectures for the first time. We release QUATRO, a collection of quantum computing applications from cognitive models. The development and execution of QUATRO shed light on gaps in the quantum computing stack that need to be closed to ease programming and drive performance. Among several contributions, we propose and study ideas pertaining to quantum cloud scheduling (using data from gate- and annealing-based quantum computers), parallelization, and more. In the long run, we expect our research to lay the groundwork for more versatile quantum computer systems in the future.

Contemporary machine learning requires training large neural networks on massive datasets and thus faces the challenges of high computational demands. Dataset distillation, as a recent emerging strategy, aims to compress real-world datasets for efficient training. However, this line of research currently struggle with large-scale and high-resolution datasets, hindering its practicality and feasibility. To this end, we re-examine the existing dataset distillation methods and identify three properties required for large-scale real-world applications, namely, realism, diversity, and efficiency. As a remedy, we propose RDED, a novel computationally-efficient yet effective data distillation paradigm, to enable both diversity and realism of the distilled data. Extensive empirical results over various neural architectures and datasets demonstrate the advancement of RDED: we can distill the full ImageNet-1K to a small dataset comprising 10 images per class within 7 minutes, achieving a notable 42% top-1 accuracy with ResNet-18 on a single RTX-4090 GPU (while the SOTA only achieves 21% but requires 6 hours).

LoRA is a technique that reduces the number of trainable parameters in a neural network by introducing low-rank adapters to linear layers. This technique is used both for fine-tuning (LoRA, QLoRA) and full train (ReLoRA). This paper presents the RunLoRA framework for efficient implementations of LoRA that significantly improves the speed of neural network training and fine-tuning using low-rank adapters. The proposed implementation optimizes the computation of LoRA operations based on dimensions of corresponding linear layer, layer input dimensions and lora rank by choosing best forward and backward computation graph based on FLOPs and time estimations, resulting in faster training without sacrificing accuracy. The experimental results show up to 17% speedup on Llama family of models.

Recent advancements in algorithms for sequential decision-making under imperfect information have shown remarkable success in large games such as limit- and no-limit poker. These algorithms traditionally formalize the games using the extensive-form game formalism, which, as we show, while theoretically sound, is memory-inefficient and computationally intensive in practice. To mitigate these challenges, a popular workaround involves using a specialized representation based on player specific information-state trees. However, as we show, this alternative significantly narrows the set of games that can be represented efficiently. In this study, we identify the set of large games on which modern algorithms have been benchmarked as being naturally represented by Sequential Bayesian Games. We elucidate the critical differences between extensive-form game and sequential Bayesian game representations, both theoretically and empirically. We further argue that the impressive experimental results often cited in the literature may be skewed, as they frequently stem from testing these algorithms only on this restricted class of games. By understanding these nuances, we aim to guide future research in developing more universally applicable and efficient algorithms for sequential decision-making under imperfect information.

With the growth of large language models, now incorporating billions of parameters, the hardware prerequisites for their training and deployment have seen a corresponding increase. Although existing tools facilitate model parallelization and distributed training, deeper model interactions, crucial for interpretability and responsible AI techniques, still demand thorough knowledge of distributed computing. This often hinders contributions from researchers with machine learning expertise but limited distributed computing background. Addressing this challenge, we present FlexModel, a software package providing a streamlined interface for engaging with models distributed across multi-GPU and multi-node configurations. The library is compatible with existing model distribution libraries and encapsulates PyTorch models. It exposes user-registerable HookFunctions to facilitate straightforward interaction with distributed model internals, bridging the gap between distributed and single-device model paradigms. Primarily, FlexModel enhances accessibility by democratizing model interactions and promotes more inclusive research in the domain of large-scale neural networks. The package is found at //github.com/VectorInstitute/flex_model.

Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding. Although diffusion models have achieved impressive quality and diversity of sample synthesis than other state-of-the-art models, they still suffer from costly sampling procedure and sub-optimal likelihood estimation. Recent studies have shown great enthusiasm on improving the performance of diffusion model. In this article, we present a first comprehensive review of existing variants of the diffusion models. Specifically, we provide a first taxonomy of diffusion models and categorize them variants to three types, namely sampling-acceleration enhancement, likelihood-maximization enhancement and data-generalization enhancement. We also introduce in detail other five generative models (i.e., variational autoencoders, generative adversarial networks, normalizing flow, autoregressive models, and energy-based models), and clarify the connections between diffusion models and these generative models. Then we make a thorough investigation into the applications of diffusion models, including computer vision, natural language processing, waveform signal processing, multi-modal modeling, molecular graph generation, time series modeling, and adversarial purification. Furthermore, we propose new perspectives pertaining to the development of this generative model.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

北京阿比特科技有限公司