亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Biophysical modeling, particularly involving partial differential equations (PDEs), offers significant potential for tailoring disease treatment protocols to individual patients. However, the inverse problem-solving aspect of these models presents a substantial challenge, either due to the high computational requirements of model-based approaches or the limited robustness of deep learning (DL) methods. We propose a novel framework that leverages the unique strengths of both approaches in a synergistic manner. Our method incorporates a DL ensemble for initial parameter estimation, facilitating efficient downstream evolutionary sampling initialized with this DL-based prior. We showcase the effectiveness of integrating a rapid deep-learning algorithm with a high-precision evolution strategy in estimating brain tumor cell concentrations from magnetic resonance images. The DL-Prior plays a pivotal role, significantly constraining the effective sampling-parameter space. This reduction results in a fivefold convergence acceleration and a Dice-score of 95%.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Processing(編程語言) · 峰值 · 總回報 · ReQuEST ·
2024 年 12 月 19 日

Within the dynamic world of Big Data, traditional systems typically operate in a passive mode, processing and responding to user queries by returning the requested data. However, this methodology falls short of meeting the evolving demands of users who not only wish to analyze data but also to receive proactive updates on topics of interest. To bridge this gap, Big Active Data (BAD) frameworks have been proposed to support extensive data subscriptions and analytics for millions of subscribers. As data volumes and the number of interested users continue to increase, the imperative to optimize BAD systems for enhanced scalability, performance, and efficiency becomes paramount. To this end, this paper introduces three main optimizations, namely: strategic aggregation, intelligent modifications to the query plan, and early result filtering, all aimed at reinforcing a BAD platform's capability to actively manage and efficiently process soaring rates of incoming data and distribute notifications to larger numbers of subscribers.

We present JaxPP, a system for efficiently scaling the training of large deep learning models with flexible pipeline parallelism. We introduce a seamless programming model that allows implementing user-defined pipeline schedules for gradient accumulation. JaxPP automatically distributes tasks, corresponding to pipeline stages, over a cluster of nodes and automatically infers the communication among them. We implement a MPMD runtime for asynchronous execution of SPMD tasks. The pipeline parallelism implementation of JaxPP improves hardware utilization by up to $1.11\times$ with respect to the best performing SPMD configuration.

Neural combinatorial optimization (NCO) has gained significant attention due to the potential of deep learning to efficiently solve combinatorial optimization problems. NCO has been widely applied to job shop scheduling problems (JSPs) with the current focus predominantly on deterministic problems. In this paper, we propose a novel attention-based scenario processing module (SPM) to extend NCO methods for solving stochastic JSPs. Our approach explicitly incorporates stochastic information by an attention mechanism that captures the embedding of sampled scenarios (i.e., an approximation of stochasticity). Fed with the embedding, the base neural network is intervened by the attended scenarios, which accordingly learns an effective policy under stochasticity. We also propose a training paradigm that works harmoniously with either the expected makespan or Value-at-Risk objective. Results demonstrate that our approach outperforms existing learning and non-learning methods for the flexible JSP problem with stochastic processing times on a variety of instances. In addition, our approach holds significant generalizability to varied numbers of scenarios and disparate distributions.

High-quality datasets are critical for training machine learning models, as inconsistencies in feature generation can hinder the accuracy and reliability of threat detection. For this reason, ensuring the quality of the data in network intrusion detection datasets is important. A key component of this is using reliable tools to generate the flows and features present in the datasets. This paper investigates the impact of flow exporters on the performance and reliability of machine learning models for intrusion detection. Using HERA, a tool designed to export flows and extract features, the raw network packets of two widely used datasets, UNSW-NB15 and CIC-IDS2017, were processed from PCAP files to generate new versions of these datasets. These were compared to the original ones in terms of their influence on the performance of several models, including Random Forest, XGBoost, LightGBM, and Explainable Boosting Machine. The results obtained were significant. Models trained on the HERA version of the datasets consistently outperformed those trained on the original dataset, showing improvements in accuracy and indicating a better generalisation. This highlighted the importance of flow generation in the model's ability to differentiate between benign and malicious traffic.

Conditional independence (CI) testing is a fundamental task in modern statistics and machine learning. The conditional randomization test (CRT) was recently introduced to test whether two random variables, $X$ and $Y$, are conditionally independent given a potentially high-dimensional set of random variables, $Z$. The CRT operates exceptionally well under the assumption that the conditional distribution $X|Z$ is known. However, since this distribution is typically unknown in practice, accurately approximating it becomes crucial. In this paper, we propose using conditional diffusion models (CDMs) to learn the distribution of $X|Z$. Theoretically and empirically, it is shown that CDMs closely approximate the true conditional distribution. Furthermore, CDMs offer a more accurate approximation of $X|Z$ compared to GANs, potentially leading to a CRT that performs better than those based on GANs. To accommodate complex dependency structures, we utilize a computationally efficient classifier-based conditional mutual information (CMI) estimator as our test statistic. The proposed testing procedure performs effectively without requiring assumptions about specific distribution forms or feature dependencies, and is capable of handling mixed-type conditioning sets that include both continuous and discrete variables. Theoretical analysis shows that our proposed test achieves a valid control of the type I error. A series of experiments on synthetic data demonstrates that our new test effectively controls both type-I and type-II errors, even in high dimensional scenarios.

We introduce a novel approach for detecting distribution shifts that negatively impact the performance of machine learning models in continuous production environments, which requires no access to ground truth data labels. It builds upon the work of Podkopaev and Ramdas [2022], who address scenarios where labels are available for tracking model errors over time. Our solution extends this framework to work in the absence of labels, by employing a proxy for the true error. This proxy is derived using the predictions of a trained error estimator. Experiments show that our method has high power and false alarm control under various distribution shifts, including covariate and label shifts and natural shifts over geography and time.

A series of modified cognitive-only particle swarm optimization (PSO) algorithms effectively mitigate premature convergence by constructing distinct vectors for different particles. However, the underutilization of these constructed vectors hampers convergence accuracy. In this paper, an adaptive balance search based complementary heterogeneous PSO architecture is proposed, which consists of a complementary heterogeneous PSO (CHxPSO) framework and an adaptive balance search (ABS) strategy. The CHxPSO framework mainly includes two update channels and two subswarms. Two channels exhibit nearly heterogeneous properties while sharing a common constructed vector. This ensures that one constructed vector is utilized across both heterogeneous update mechanisms. The two subswarms work within their respective channels during the evolutionary process, preventing interference between the two channels. The ABS strategy precisely controls the proportion of particles involved in the evolution in the two channels, and thereby guarantees the flexible utilization of the constructed vectors, based on the evolutionary process and the interactions with the problem's fitness landscape. Together, our architecture ensures the effective utilization of the constructed vectors by emphasizing exploration in the early evolutionary process while exploitation in the later, enhancing the performance of a series of modified cognitive-only PSOs. Extensive experimental results demonstrate the generalization performance of our architecture.

Analyzing spatially varying effects is pivotal in geographic analysis. However, accurately capturing and interpreting this variability is challenging due to the increasing complexity and non-linearity of geospatial data. Recent advancements in integrating Geographically Weighted (GW) models with artificial intelligence (AI) methodologies offer novel approaches. However, these methods often focus on single algorithms and emphasize prediction over interpretability. The recent GeoShapley method integrates machine learning (ML) with Shapley values to explain the contribution of geographical features, advancing the combination of geospatial ML and explainable AI (XAI). Yet, it lacks exploration of the nonlinear interactions between geographical features and explanatory variables. Herein, an ensemble framework is proposed to merge local spatial weighting scheme with XAI and ML technologies to bridge this gap. Through tests on synthetic datasets and comparisons with GWR, MGWR, and GeoShapley, this framework is verified to enhance interpretability and predictive accuracy by elucidating spatial variability. Reproducibility is explored through the comparison of spatial weighting schemes and various ML models, emphasizing the necessity of model reproducibility to address model and parameter uncertainty. This framework works in both geographic regression and classification, offering a novel approach to understanding complex spatial phenomena.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司