Pornographic content occurring in human-machine interaction dialogues can cause severe side effects for users in open-domain dialogue systems. However, research on detecting pornographic language within human-machine interaction dialogues is an important subject that is rarely studied. To advance in this direction, we introduce CensorChat, a dialogue monitoring dataset aimed at detecting whether the dialogue session contains pornographic content. To this end, we collect real-life human-machine interaction dialogues in the wild and break them down into single utterances and single-turn dialogues, with the last utterance spoken by the chatbot. We propose utilizing knowledge distillation of large language models to annotate the dataset. Specifically, first, the raw dataset is annotated by four open-source large language models, with the majority vote determining the label. Second, we use ChatGPT to update the empty label from the first step. Third, to ensure the quality of the validation and test sets, we utilize GPT-4 for label calibration. If the current label does not match the one generated by GPT-4, we employ a self-criticism strategy to verify its correctness. Finally, to facilitate the detection of pornographic text, we develop a series of text classifiers using a pseudo-labeled dataset. Detailed data analysis demonstrates that leveraging knowledge distillation techniques with large language models provides a practical and cost-efficient method for developing pornographic text detectors.
Initial alignment is one of the key technologies in strapdown inertial navigation system (SINS) to provide initial state information for vehicle attitude and navigation. For some situations, such as the attitude heading reference system, the position is not necessarily required or even available, then the self-alignment that does not rely on any external aid becomes very necessary. This study presents a new self-alignment method under swaying conditions, which can determine the latitude and attitude simultaneously by utilizing all observation vectors without solving the Wahba problem, and it is different from the existing methods. By constructing the dyadic tensor of each observation and reference vector itself, all equations related to observation and reference vectors are accumulated into one equation, where the latitude variable is extracted and solved according to the same eigenvalues of similar matrices on both sides of the equation, meanwhile the attitude is obtained by eigenvalue decomposition. Simulation and experiment tests verify the effectiveness of the proposed methods, and the alignment result is better than TRIAD in convergence speed and stability and comparable with OBA method in alignment accuracy with or without latitude. It is useful for guiding the design of initial alignment in autonomous vehicle applications.
Designing preference elicitation (PE) methodologies that can quickly ascertain a user's top item preferences in a cold-start setting is a key challenge for building effective and personalized conversational recommendation (ConvRec) systems. While large language models (LLMs) constitute a novel technology that enables fully natural language (NL) PE dialogues, we hypothesize that monolithic LLM NL-PE approaches lack the multi-turn, decision-theoretic reasoning required to effectively balance the NL exploration and exploitation of user preferences towards an arbitrary item set. In contrast, traditional Bayesian optimization PE methods define theoretically optimal PE strategies, but fail to use NL item descriptions or generate NL queries, unrealistically assuming users can express preferences with direct item ratings and comparisons. To overcome the limitations of both approaches, we formulate NL-PE in a Bayesian Optimization (BO) framework that seeks to generate NL queries which actively elicit natural language feedback to reduce uncertainty over item utilities to identify the best recommendation. We demonstrate our framework in a novel NL-PE algorithm, PEBOL, which uses Natural Language Inference (NLI) between user preference utterances and NL item descriptions to maintain preference beliefs and BO strategies such as Thompson Sampling (TS) and Upper Confidence Bound (UCB) to guide LLM query generation. We numerically evaluate our methods in controlled experiments, finding that PEBOL achieves up to 131% improvement in MAP@10 after 10 turns of cold start NL-PE dialogue compared to monolithic GPT-3.5, despite relying on a much smaller 400M parameter NLI model for preference inference.
Over the last decade, similar to other application domains, social media content has been proven very effective in disaster informatics. However, due to the unstructured nature of the data, several challenges are associated with disaster analysis in social media content. To fully explore the potential of social media content in disaster informatics, access to relevant content and the correct geo-location information is very critical. In this paper, we propose a three-step solution to tackling these challenges. Firstly, the proposed solution aims to classify social media posts into relevant and irrelevant posts followed by the automatic extraction of location information from the posts' text through Named Entity Recognition (NER) analysis. Finally, to quickly analyze the topics covered in large volumes of social media posts, we perform topic modeling resulting in a list of top keywords, that highlight the issues discussed in the tweet. For the Relevant Classification of Twitter Posts (RCTP), we proposed a merit-based fusion framework combining the capabilities of four different models namely BERT, RoBERTa, Distil BERT, and ALBERT obtaining the highest F1-score of 0.933 on a benchmark dataset. For the Location Extraction from Twitter Text (LETT), we evaluated four models namely BERT, RoBERTa, Distil BERTA, and Electra in an NER framework obtaining the highest F1-score of 0.960. For topic modeling, we used the BERTopic library to discover the hidden topic patterns in the relevant tweets. The experimental results of all the components of the proposed end-to-end solution are very encouraging and hint at the potential of social media content and NLP in disaster management.
Social recommender systems (SocialRS) simultaneously leverage the user-to-item interactions as well as the user-to-user social relations for the task of generating item recommendations to users. Additionally exploiting social relations is clearly effective in understanding users' tastes due to the effects of homophily and social influence. For this reason, SocialRS has increasingly attracted attention. In particular, with the advance of graph neural networks (GNN), many GNN-based SocialRS methods have been developed recently. Therefore, we conduct a comprehensive and systematic review of the literature on GNN-based SocialRS. In this survey, we first identify 84 papers on GNN-based SocialRS after annotating 2151 papers by following the PRISMA framework (preferred reporting items for systematic reviews and meta-analyses). Then, we comprehensively review them in terms of their inputs and architectures to propose a novel taxonomy: (1) input taxonomy includes 5 groups of input type notations and 7 groups of input representation notations; (2) architecture taxonomy includes 8 groups of GNN encoder notations, 2 groups of decoder notations, and 12 groups of loss function notations. We classify the GNN-based SocialRS methods into several categories as per the taxonomy and describe their details. Furthermore, we summarize benchmark datasets and metrics widely used to evaluate the GNN-based SocialRS methods. Finally, we conclude this survey by presenting some future research directions. GitHub repository with the curated list of papers are available at //github.com/claws-lab/awesome-GNN-social-recsys.
The emergence of multimodal data on social media platforms presents new opportunities to better understand user sentiments toward a given aspect. However, existing multimodal datasets for Aspect-Category Sentiment Analysis (ACSA) often focus on textual annotations, neglecting fine-grained information in images. Consequently, these datasets fail to fully exploit the richness inherent in multimodal. To address this, we introduce a new Vietnamese multimodal dataset, named ViMACSA, which consists of 4,876 text-image pairs with 14,618 fine-grained annotations for both text and image in the hotel domain. Additionally, we propose a Fine-Grained Cross-Modal Fusion Framework (FCMF) that effectively learns both intra- and inter-modality interactions and then fuses these information to produce a unified multimodal representation. Experimental results show that our framework outperforms SOTA models on the ViMACSA dataset, achieving the highest F1 score of 79.73%. We also explore characteristics and challenges in Vietnamese multimodal sentiment analysis, including misspellings, abbreviations, and the complexities of the Vietnamese language. This work contributes both a benchmark dataset and a new framework that leverages fine-grained multimodal information to improve multimodal aspect-category sentiment analysis. Our dataset is available for research purposes: //github.com/hoangquy18/Multimodal-Aspect-Category-Sentiment-Analysis.
The integration of path reasoning with language modeling in recommender systems has shown promise for enhancing explainability but often struggles with the authenticity of the explanations provided. Traditional models modify their architecture to produce entities and relations alternately--for example, employing separate heads for each in the model--which does not ensure the authenticity of paths reflective of actual Knowledge Graph (KG) connections. This misalignment can lead to user distrust due to the generation of corrupted paths. Addressing this, we introduce PEARLM (Path-based Explainable-Accurate Recommender based on Language Modelling), which innovates with a Knowledge Graph Constraint Decoding (KGCD) mechanism. This mechanism ensures zero incidence of corrupted paths by enforcing adherence to valid KG connections at the decoding level, agnostic of the underlying model architecture. By integrating direct token embedding learning from KG paths, PEARLM not only guarantees the generation of plausible and verifiable explanations but also highly enhances recommendation accuracy. We validate the effectiveness of our approach through a rigorous empirical assessment, employing a newly proposed metric that quantifies the integrity of explanation paths. Our results demonstrate a significant improvement over existing methods, effectively eliminating the generation of inaccurate paths and advancing the state-of-the-art in explainable recommender systems.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.
Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at //github.com/siat-nlp/TransDG.