亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Urban development is shaped by historical, geographical, and economic factors, presenting challenges for planners in understanding urban form. This study models commute flows across multiple U.S. cities, uncovering consistent patterns in urban population distributions and commuting behaviors. By embedding urban locations to reflect mobility networks, we observe that population distributions across redefined urban spaces tend to approximate log-normal distributions, in contrast to the often irregular distributions found in geographical space. This divergence suggests that natural and historical constraints shape spatial population patterns, while, under ideal conditions, urban organization may naturally align with log-normal distribution. A theoretical model using preferential attachment and random walks supports the emergence of this distribution in urban settings. These findings reveal a fundamental organizing principle in urban systems that, while not always visible geographically, consistently governs population flows and distributions. This insight into the underlying urban structure can inform planners seeking to design efficient, resilient cities.

相關內容

Autonomous inspection of infrastructure on land and in water is a quickly growing market, with applications including surveying constructions, monitoring plants, and tracking environmental changes in on- and off-shore wind energy farms. For Autonomous Underwater Vehicles and Unmanned Aerial Vehicles overfitting of controllers to simulation conditions fundamentally leads to poor performance in the operation environment. There is a pressing need for more diverse and realistic test data that accurately represents the challenges faced by these systems. We address the challenge of generating perception test data for autonomous systems by leveraging Neural Radiance Fields to generate realistic and diverse test images, and integrating them into a metamorphic testing framework for vision components such as vSLAM and object detection. Our tool, N2R-Tester, allows training models of custom scenes and rendering test images from perturbed positions. An experimental evaluation of N2R-Tester on eight different vision components in AUVs and UAVs demonstrates the efficacy and versatility of the approach.

Machine learning models are susceptible to a variety of attacks that can erode trust, including attacks against the privacy of training data, and adversarial examples that jeopardize model accuracy. Differential privacy and certified robustness are effective frameworks for combating these two threats respectively, as they each provide future-proof guarantees. However, we show that standard differentially private model training is insufficient for providing strong certified robustness guarantees. Indeed, combining differential privacy and certified robustness in a single system is non-trivial, leading previous works to introduce complex training schemes that lack flexibility. In this work, we present DP-CERT, a simple and effective method that achieves both privacy and robustness guarantees simultaneously by integrating randomized smoothing into standard differentially private model training. Compared to the leading prior work, DP-CERT gives up to a 2.5% increase in certified accuracy for the same differential privacy guarantee on CIFAR10. Through in-depth per-sample metric analysis, we find that larger certifiable radii correlate with smaller local Lipschitz constants, and show that DP-CERT effectively reduces Lipschitz constants compared to other differentially private training methods. The code is available at github.com/layer6ai-labs/dp-cert.

When independently trained or designed robots are deployed in a shared environment, their combined actions can lead to unintended negative side effects (NSEs). To ensure safe and efficient operation, robots must optimize task performance while minimizing the penalties associated with NSEs, balancing individual objectives with collective impact. We model the problem of mitigating NSEs in a cooperative multi-agent system as a bi-objective lexicographic decentralized Markov decision process. We assume independence of transitions and rewards with respect to the robots' tasks, but the joint NSE penalty creates a form of dependence in this setting. To improve scalability, the joint NSE penalty is decomposed into individual penalties for each robot using credit assignment, which facilitates decentralized policy computation. We empirically demonstrate, using mobile robots and in simulation, the effectiveness and scalability of our approach in mitigating NSEs.

We interact with computers on an everyday basis, be it in everyday life or work, and many aspects of work can be done entirely with access to a computer and the Internet. At the same time, thanks to improvements in large language models (LLMs), there has also been a rapid development in AI agents that interact with and affect change in their surrounding environments. But how performant are AI agents at helping to accelerate or even autonomously perform work-related tasks? The answer to this question has important implications for both industry looking to adopt AI into their workflows, and for economic policy to understand the effects that adoption of AI may have on the labor market. To measure the progress of these LLM agents' performance on performing real-world professional tasks, in this paper, we introduce TheAgentCompany, an extensible benchmark for evaluating AI agents that interact with the world in similar ways to those of a digital worker: by browsing the Web, writing code, running programs, and communicating with other coworkers. We build a self-contained environment with internal web sites and data that mimics a small software company environment, and create a variety of tasks that may be performed by workers in such a company. We test baseline agents powered by both closed API-based and open-weights language models (LMs), and find that with the most competitive agent, 24% of the tasks can be completed autonomously. This paints a nuanced picture on task automation with LM agents -- in a setting simulating a real workplace, a good portion of simpler tasks could be solved autonomously, but more difficult long-horizon tasks are still beyond the reach of current systems.

Ideas generation is a core activity for innovation in organizations. The creativity of the generated ideas depends not only on the knowledge retrieved from the organizations' knowledge bases, but also on the external knowledge retrieved from other resources. Unfortunately, organizations often cannot efficiently utilize the knowledge in the knowledge bases due to the limited abilities of the search and retrieval mechanisms especially when dealing with unstructured data. In this paper, we present a new cognitive support framework for ideation that uses the IBM Watson DeepQA services. IBM Watson is a Question Answering system which mimics human cognitive abilities to retrieve and rank information. The proposed framework is based on the Search for Ideas in the Associative Memory (SIAM) model to help organizations develop creative ideas through discovering new relationships between retrieved data. To evaluate the effectiveness of the proposed system, the generated ideas generated are selected and assessed using a set of established creativity criteria.

Balancing human development with conservation necessitates ecological policies that optimize outcomes within limited budgets, highlighting the importance of cost-efficiency and local impact analysis. This study employs the Socio-Econ-Ecosystem Multipurpose Simulator (SEEMS), an Agent-Based Model (ABM) designed for simulating small-scale Coupled Human and Nature Systems (CHANS), to evaluate the cost-efficiency of two major ecology conservation programs: Grain-to-Green (G2G) and Firewood-to-Electricity (F2E). Focusing on China Wolong National Reserve, a worldwide hot spot for flagship species conservation, the study evaluates the direct benefits of these programs, including reverted farmland area and firewood consumption, along with their combined indirect benefits on habitat quality, carbon emissions, and gross economic benefits. The findings are as follows: (1) The G2G program achieves optimal financial efficiency at approximately 500 CNY/Mu, with diminishing returns observed beyond 1000 CNY/Mu; (2) For the F2E program, the most fiscally cost-efficient option arises when the subsidized electricity price is at 0.4-0.5 CNY/kWh, while further reductions of the prices to below 0.1 CNY/kWh result in a diminishing cost-benefit ratio; (3) Comprehensive cost-efficiency analysis reveals no significant link between financial burden and carbon emissions, but a positive correlation with habitat quality and an inverted U-shaped relationship with total economic income; (4) Pareto analysis identifies 18 optimal dual-policy combinations for balancing carbon footprint, habitat quality, and gross economic benefits; (5) Posterior Pareto optimization further refines the selection of a specific policy scheme for a given realistic scenario. The analytical framework of this paper helps policymakers design economically viable and environmentally sustainable policies, addressing global conservation challenges.

Understanding the progress of a task allows humans to not only track what has been done but also to better plan for future goals. We demonstrate TaKSIE, a novel framework that incorporates task progress knowledge into visual subgoal generation for robotic manipulation tasks. We jointly train a recurrent network with a latent diffusion model to generate the next visual subgoal based on the robot's current observation and the input language command. At execution time, the robot leverages a visual progress representation to monitor the task progress and adaptively samples the next visual subgoal from the model to guide the manipulation policy. We train and validate our model in simulated and real-world robotic tasks, achieving state-of-the-art performance on the CALVIN manipulation benchmark. We find that the inclusion of task progress knowledge can improve the robustness of trained policy for different initial robot poses or various movement speeds during demonstrations. The project website can be found at //live-robotics-uva.github.io/TaKSIE/ .

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.

Spectral clustering is a leading and popular technique in unsupervised data analysis. Two of its major limitations are scalability and generalization of the spectral embedding (i.e., out-of-sample-extension). In this paper we introduce a deep learning approach to spectral clustering that overcomes the above shortcomings. Our network, which we call SpectralNet, learns a map that embeds input data points into the eigenspace of their associated graph Laplacian matrix and subsequently clusters them. We train SpectralNet using a procedure that involves constrained stochastic optimization. Stochastic optimization allows it to scale to large datasets, while the constraints, which are implemented using a special-purpose output layer, allow us to keep the network output orthogonal. Moreover, the map learned by SpectralNet naturally generalizes the spectral embedding to unseen data points. To further improve the quality of the clustering, we replace the standard pairwise Gaussian affinities with affinities leaned from unlabeled data using a Siamese network. Additional improvement can be achieved by applying the network to code representations produced, e.g., by standard autoencoders. Our end-to-end learning procedure is fully unsupervised. In addition, we apply VC dimension theory to derive a lower bound on the size of SpectralNet. State-of-the-art clustering results are reported on the Reuters dataset. Our implementation is publicly available at //github.com/kstant0725/SpectralNet .

北京阿比特科技有限公司