Liquid perception is critical for robotic pouring tasks. It usually requires the robust visual detection of flowing liquid. However, while recent works have shown promising results in liquid perception, they typically require labeled data for model training, a process that is both time-consuming and reliant on human labor. To this end, this paper proposes a simple yet effective framework PourIt!, to serve as a tool for robotic pouring tasks. We design a simple data collection pipeline that only needs image-level labels to reduce the reliance on tedious pixel-wise annotations. Then, a binary classification model is trained to generate Class Activation Map (CAM) that focuses on the visual difference between these two kinds of collected data, i.e., the existence of liquid drop or not. We also devise a feature contrast strategy to improve the quality of the CAM, thus entirely and tightly covering the actual liquid regions. Then, the container pose is further utilized to facilitate the 3D point cloud recovery of the detected liquid region. Finally, the liquid-to-container distance is calculated for visual closed-loop control of the physical robot. To validate the effectiveness of our proposed method, we also contribute a novel dataset for our task and name it PourIt! dataset. Extensive results on this dataset and physical Franka robot have shown the utility and effectiveness of our method in the robotic pouring tasks. Our dataset, code and pre-trained models will be available on the project page.
Dexterous manipulation of objects once held in hand remains a challenge. Such skills are, however, necessary for robotics to move beyond gripper-based manipulation and use all the dexterity offered by anthropomorphic robotic hands. One major challenge when manipulating an object within the hand is that fingers must move around the object while avoiding collision with other fingers or the object. Such collision-free paths must be computed in real-time, as the smallest deviation from the original plan can easily lead to collisions. We present a real-time approach to computing collision-free paths in a high-dimensional space. To guide the exploration, we learn an explicit representation of the free space, retrievable in real-time. We further combine this representation with closed-loop control via dynamical systems and sampling-based motion planning and show that the combination increases performance compared to alternatives, offering efficient search of feasible paths and real-time obstacle avoidance in a multi-fingered robotic hand.
Semantic segmentation is a common task in autonomous driving to understand the surrounding environment. Driveable Area Segmentation and Lane Detection are particularly important for safe and efficient navigation on the road. However, original semantic segmentation models are computationally expensive and require high-end hardware, which is not feasible for embedded systems in autonomous vehicles. This paper proposes a lightweight model for the driveable area and lane line segmentation. TwinLiteNet is designed cheaply but achieves accurate and efficient segmentation results. We evaluate TwinLiteNet on the BDD100K dataset and compare it with modern models. Experimental results show that our TwinLiteNet performs similarly to existing approaches, requiring significantly fewer computational resources. Specifically, TwinLiteNet achieves a mIoU score of 91.3% for the Drivable Area task and 31.08% IoU for the Lane Detection task with only 0.4 million parameters and achieves 415 FPS on GPU RTX A5000. Furthermore, TwinLiteNet can run in real-time on embedded devices with limited computing power, especially since it achieves 60FPS on Jetson Xavier NX, making it an ideal solution for self-driving vehicles. Code is available: url{//github.com/chequanghuy/TwinLiteNet}.
Swarm aerial robots are required to maintain close proximity to successfully traverse narrow areas in cluttered environments. However, this movement is affected by the downwash effect generated from other quadrotors in the swarm. This aerodynamic effect is highly nonlinear and hard to describe through mathematical modeling. Additionally, the existence of the downwash disturbance can be predicted based on the states of neighboring quadrotors. If this prediction is considered, the control loop can proactively handle the disturbance, resulting in improved performance. To address these challenges, we propose an approach that integrates a Neural network Downwash Predictor with Nonlinear Model Predictive Control (NDP-NMPC). The neural network is trained with spectral normalization to ensure robustness and safety in uncollected cases. The predicted disturbances are then incorporated into the optimization scheme in NMPC, which enforces constraints to ensure that states and inputs remain within safe limits. We also design a quadrotor system, identify its parameters, and implement the proposed method on board. Finally, we conduct a prediction experiment to validate the safety and effectiveness of the network. In addition, a real-time trajectory tracking experiment is performed with the entire system, demonstrating a 75.37% reduction in tracking error in height under the downwash effect.
Sparse Bayesian Learning (SBL) constructs an extremely sparse probabilistic model with very competitive generalization. However, SBL needs to invert a big covariance matrix with complexity $O(M^3)$ (M: feature size) for updating the regularization priors, making it difficult for problems with high dimensional feature space or large data size. As it may easily suffer from the memory overflow issue in such problems. This paper addresses this issue with a newly proposed diagonal Quasi-Newton (DQN) method for SBL called DQN-SBL where the inversion of big covariance matrix is ignored so that the complexity is reduced to $O(M)$. The DQN-SBL is thoroughly evaluated for non linear and linear classifications with various benchmarks of different sizes. Experimental results verify that DQN-SBL receives competitive generalization with a very sparse model and scales well to large-scale problems.
Partial differential equation (PDE) solvers are extensively utilized across numerous scientific and engineering fields. However, achieving high performance and scalability often necessitates intricate and low-level programming, particularly when leveraging deterministic sparsity patterns in structured grids. In this paper, we propose an innovative domain-specific language (DSL), Mat2Stencil, with its compiler, for PDE solvers on structured grids. Mat2Stencil introduces a structured sparse matrix abstraction, facilitating modular, flexible, and easy-to-use expression of solvers across a broad spectrum, encompassing components such as Jacobi or Gauss-Seidel preconditioners, incomplete LU or Cholesky decompositions, and multigrid methods built upon them. Our DSL compiler subsequently generates matrix-free code consisting of generalized stencils through multi-stage programming. The code allows spatial loop-carried dependence in the form of quasi-affine loops, in addition to the Jacobi-style stencil's embarrassingly parallel on spatial dimensions. We further propose a novel automatic parallelization technique for the spatially dependent loops, which offers a compile-time deterministic task partitioning for threading, calculates necessary inter-thread synchronization automatically, and generates an efficient multi-threaded implementation with fine-grained synchronization. Implementing 4 benchmarking programs, 3 of them being the pseudo-applications in NAS Parallel Benchmarks with $6.3\%$ lines of code and 1 being matrix-free High Performance Conjugate Gradients with $16.4\%$ lines of code, we achieve up to $1.67\times$ and on average $1.03\times$ performance compared to manual implementations.
The robotic manipulation of deformable linear objects has shown great potential in a wide range of real-world applications. However, it presents many challenges due to the objects' complex nonlinearity and high-dimensional configuration. In this paper, we propose a new shape servoing framework to automatically manipulate elastic rods through visual feedback. Our new method uses parameterized regression features to compute a compact (low-dimensional) feature vector that quantifies the object's shape, thus, enabling to establish an explicit shape servo-loop. To automatically deform the rod into a desired shape, the proposed adaptive controller iteratively estimates the differential transformation between the robot's motion and the relative shape changes; This valuable capability allows to effectively manipulate objects with unknown mechanical models. An auto-tuning algorithm is introduced to adjust the robot's shaping motions in real-time based on optimal performance criteria. To validate the proposed framework, a detailed experimental study with vision-guided robotic manipulators is presented.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
Deep neural networks have been able to outperform humans in some cases like image recognition and image classification. However, with the emergence of various novel categories, the ability to continuously widen the learning capability of such networks from limited samples, still remains a challenge. Techniques like Meta-Learning and/or few-shot learning showed promising results, where they can learn or generalize to a novel category/task based on prior knowledge. In this paper, we perform a study of the existing few-shot meta-learning techniques in the computer vision domain based on their method and evaluation metrics. We provide a taxonomy for the techniques and categorize them as data-augmentation, embedding, optimization and semantics based learning for few-shot, one-shot and zero-shot settings. We then describe the seminal work done in each category and discuss their approach towards solving the predicament of learning from few samples. Lastly we provide a comparison of these techniques on the commonly used benchmark datasets: Omniglot, and MiniImagenet, along with a discussion towards the future direction of improving the performance of these techniques towards the final goal of outperforming humans.