Understanding knowledge mechanisms in Large Language Models (LLMs) is crucial for advancing towards trustworthy AGI. This paper reviews knowledge mechanism analysis from a novel taxonomy including knowledge utilization and evolution. Knowledge utilization delves into the mechanism of memorization, comprehension and application, and creation. Knowledge evolution focuses on the dynamic progression of knowledge within individual and group LLMs. Moreover, we discuss what knowledge LLMs have learned, the reasons for the fragility of parametric knowledge, and the potential dark knowledge (hypothesis) that will be challenging to address. We hope this work can help understand knowledge in LLMs and provide insights for future research.
This paper presents TE-NeXt, a novel and efficient architecture for Traversability Estimation (TE) from sparse LiDAR point clouds based on a residual convolution block. TE-NeXt block fuses notions of current trends such as attention mechanisms and 3D sparse convolutions. TE-NeXt aims to demonstrate high capacity for generalisation in a variety of urban and natural environments, using well-known and accessible datasets such as SemanticKITTI, Rellis-3D and SemanticUSL. Thus, the designed architecture ouperforms state-of-the-art methods in the problem of semantic segmentation, demonstrating better results in unstructured environments and maintaining high reliability and robustness in urbans environments, which leads to better abstraction. Implementation is available in a open repository to the scientific community with the aim of ensuring the reproducibility of results.
Recent advancements in Large Language Models (LLMs) have facilitated the development of Multimodal LLMs (MLLMs). Despite their impressive capabilities, MLLMs often suffer from over-reliance on unimodal biases (e.g., language bias and vision bias), leading to incorrect answers or hallucinations in complex multimodal tasks. To investigate this issue, we propose a causal framework to interpret the biases in Visual Question Answering (VQA) problems. Within this framework, we conduct an in-depth causal analysis to assess the causal effect of these biases on MLLM predictions. Based on the analysis, we introduce 1) a novel MORE dataset with 12,000 challenging VQA instances requiring multi-hop reasoning and overcoming unimodal biases. 2) a causality-enhanced agent framework CAVE that guides models to comprehensively integrate information from different modalities and mitigate biases. Our experiments show that MLLMs perform poorly on MORE, indicating strong unimodal biases and limited semantic understanding. However, when integrated with our CAVE, promising improvements in reasoning and bias mitigation can be seen. These findings provide important insights for the development of more robust MLLMs and contribute to the broader goal of advancing multimodal AI systems capable of deeper understanding and reasoning. Our project page is at //github.com/OpenCausaLab/MORE.
New LLM evaluation benchmarks are important to align with the rapid development of Large Language Models (LLMs). In this work, we present Chinese SimpleQA, the first comprehensive Chinese benchmark to evaluate the factuality ability of language models to answer short questions, and Chinese SimpleQA mainly has five properties (i.e., Chinese, Diverse, High-quality, Static, Easy-to-evaluate). Specifically, first, we focus on the Chinese language over 6 major topics with 99 diverse subtopics. Second, we conduct a comprehensive quality control process to achieve high-quality questions and answers, where the reference answers are static and cannot be changed over time. Third, following SimpleQA, the questions and answers are very short, and the grading process is easy-to-evaluate based on OpenAI API. Based on Chinese SimpleQA, we perform a comprehensive evaluation on the factuality abilities of existing LLMs. Finally, we hope that Chinese SimpleQA could guide the developers to better understand the Chinese factuality abilities of their models and facilitate the growth of foundation models.
This paper presents innovative approaches to optimization problems, focusing on both Single-Objective Multi-Modal Optimization (SOMMOP) and Multi-Objective Optimization (MOO). In SOMMOP, we integrate chaotic evolution with niching techniques, as well as Persistence-Based Clustering combined with Gaussian mutation. The proposed algorithms, Chaotic Evolution with Deterministic Crowding (CEDC) and Chaotic Evolution with Clustering Algorithm (CECA), utilize chaotic dynamics to enhance population diversity and improve search efficiency. For MOO, we extend these methods into a comprehensive framework that incorporates Uncertainty-Based Selection, Adaptive Parameter Tuning, and introduces a radius \( R \) concept in deterministic crowding, which enables clearer and more precise separation of populations at peak points. Experimental results demonstrate that the proposed algorithms outperform traditional methods, achieving superior optimization accuracy and robustness across a variety of benchmark functions.
This scoping review examines the current body of knowledge at the intersection of Generative Artificial Intelligence (GenAI) and Self-Directed Learning (SDL). By synthesising the findings from 18 studies published from 2020 to 2024 and following the PRISMA-SCR guidelines for scoping reviews, we developed four key themes. This includes GenAI as a Potential Enhancement for SDL, The Educator as a GenAI Guide, Personalisation of Learning, and Approaching with Caution. Our findings suggest that GenAI tools, including ChatGPT and other Large Language Models (LLMs) show promise in potentially supporting SDL through on-demand, personalised assistance. At the same time, the literature emphasises that educators are as important and central to the learning process as ever before, although their role may continue to shift as technologies develop. Our review reveals that there are still significant gaps in understanding the long-term impacts of GenAI on SDL outcomes, and there is a further need for longitudinal empirical studies that explore not only text-based chatbots but also emerging multimodal applications.
Visual Question Answering (VQA) research seeks to create AI systems to answer natural language questions in images, yet VQA methods often yield overly simplistic and short answers. This paper aims to advance the field by introducing Visual Question Explanation (VQE), which enhances the ability of VQA to provide detailed explanations rather than brief responses and address the need for more complex interaction with visual content. We first created an MLVQE dataset from a 14-week streamed video machine learning course, including 885 slide images, 110,407 words of transcripts, and 9,416 designed question-answer (QA) pairs. Next, we proposed a novel SparrowVQE, a small 3 billion parameters multimodal model. We trained our model with a three-stage training mechanism consisting of multimodal pre-training (slide images and transcripts feature alignment), instruction tuning (tuning the pre-trained model with transcripts and QA pairs), and domain fine-tuning (fine-tuning slide image and QA pairs). Eventually, our SparrowVQE can understand and connect visual information using the SigLIP model with transcripts using the Phi-2 language model with an MLP adapter. Experimental results demonstrate that our SparrowVQE achieves better performance in our developed MLVQE dataset and outperforms state-of-the-art methods in the other five benchmark VQA datasets. The source code is available at \url{//github.com/YoushanZhang/SparrowVQE}.
Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.
Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.
Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.
This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.