The success of deep reinforcement learning (DRL) lies in its ability to learn a representation that is well-suited for the exploration and exploitation task. To understand how the choice of representation can improve the efficiency of reinforcement learning (RL), we study representation selection for a class of low-rank Markov Decision Processes (MDPs) where the transition kernel can be represented in a bilinear form. We propose an efficient algorithm, called ReLEX, for representation learning in both online and offline RL. Specifically, we show that the online version of ReLEX, called ReLEX-UCB, always performs no worse than the state-of-the-art algorithm without representation selection, and achieves a strictly better constant regret if the representation function class has a "coverage" property over the entire state-action space. For the offline counterpart, ReLEX-LCB, we show that the algorithm can find the optimal policy if the representation class can cover the state-action space and achieves gap-dependent sample complexity. This is the first result with constant sample complexity for representation learning in offline RL.
Clustered federated learning (CFL) is proposed to mitigate the performance deterioration stemming from data heterogeneity in federated learning (FL) by grouping similar clients for cluster-wise model training. However, current CFL methods struggle due to inadequate integration of global and intra-cluster knowledge and the absence of an efficient online model similarity metric, while treating the cluster count as a fixed hyperparameter limits flexibility and robustness. In this paper, we propose an adaptive CFL framework, named FedAC, which (1) efficiently integrates global knowledge into intra-cluster learning by decoupling neural networks and utilizing distinct aggregation methods for each submodule, significantly enhancing performance; (2) includes a costeffective online model similarity metric based on dimensionality reduction; (3) incorporates a cluster number fine-tuning module for improved adaptability and scalability in complex, heterogeneous environments. Extensive experiments show that FedAC achieves superior empirical performance, increasing the test accuracy by around 1.82% and 12.67% on CIFAR-10 and CIFAR-100 datasets, respectively, under different non-IID settings compared to SOTA methods.
Project-based learning (PBL) is an instructional method that is very helpful in nurturing students' creativity, but it requires significant time and energy from both students and teachers. Large language models (LLMs) have been proven to assist in creative tasks, yet much controversy exists regarding their role in fostering creativity. This paper explores the potential of LLMs in PBL settings, with a special focus on fostering creativity. We began with an exploratory study involving 12 middle school students and identified five design considerations for LLM applications in PBL. Building on this, we developed an LLM-empowered, 48-hour PBL program and conducted an instructional experiment with 31 middle school students. Our results indicated that LLMs can enhance every stage of PBL. Additionally, we also discovered ambivalent perspectives among students and mentors toward LLM usage. Furthermore, we explored the challenge and design implications of integrating LLMs into PBL and reflected on the program. By bridging AI advancements into educational practice, our work aims to inspire further discourse and investigation into harnessing AI's potential in child-centric educational settings.
We present an approach using deep reinforcement learning (DRL) to directly generate motion matching queries for long-term tasks, particularly targeting the reaching of specific locations. By integrating motion matching and DRL, our method demonstrates the rapid learning of policies for target location tasks within minutes on a standard desktop, employing a simple reward design. Additionally, we propose a unique hit reward and obstacle curriculum scheme to enhance policy learning in environments with moving obstacles.
In the evolving field of machine learning, ensuring fairness has become a critical concern, prompting the development of algorithms designed to mitigate discriminatory outcomes in decision-making processes. However, achieving fairness in the presence of group-specific concept drift remains an unexplored frontier, and our research represents pioneering efforts in this regard. Group-specific concept drift refers to situations where one group experiences concept drift over time while another does not, leading to a decrease in fairness even if accuracy remains fairly stable. Within the framework of federated learning, where clients collaboratively train models, its distributed nature further amplifies these challenges since each client can experience group-specific concept drift independently while still sharing the same underlying concept, creating a complex and dynamic environment for maintaining fairness. One of the significant contributions of our research is the formalization and introduction of the problem of group-specific concept drift and its distributed counterpart, shedding light on its critical importance in the realm of fairness. In addition, leveraging insights from prior research, we adapt an existing distributed concept drift adaptation algorithm to tackle group-specific distributed concept drift which utilizes a multi-model approach, a local group-specific drift detection mechanism, and continuous clustering of models over time. The findings from our experiments highlight the importance of addressing group-specific concept drift and its distributed counterpart to advance fairness in machine learning.
The remarkable success of deep learning has prompted interest in its application to medical diagnosis. Even tough state-of-the-art deep learning models have achieved human-level accuracy on the classification of different types of medical data, these models are hardly adopted in clinical workflows, mainly due to their lack of interpretability. The black-box-ness of deep learning models has raised the need for devising strategies to explain the decision process of these models, leading to the creation of the topic of eXplainable Artificial Intelligence (XAI). In this context, we provide a thorough survey of XAI applied to medical diagnosis, including visual, textual, and example-based explanation methods. Moreover, this work reviews the existing medical imaging datasets and the existing metrics for evaluating the quality of the explanations . Complementary to most existing surveys, we include a performance comparison among a set of report generation-based methods. Finally, the major challenges in applying XAI to medical imaging are also discussed.
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.
Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.
Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.
The goal of few-shot learning is to learn a classifier that generalizes well even when trained with a limited number of training instances per class. The recently introduced meta-learning approaches tackle this problem by learning a generic classifier across a large number of multiclass classification tasks and generalizing the model to a new task. Yet, even with such meta-learning, the low-data problem in the novel classification task still remains. In this paper, we propose Transductive Propagation Network (TPN), a novel meta-learning framework for transductive inference that classifies the entire test set at once to alleviate the low-data problem. Specifically, we propose to learn to propagate labels from labeled instances to unlabeled test instances, by learning a graph construction module that exploits the manifold structure in the data. TPN jointly learns both the parameters of feature embedding and the graph construction in an end-to-end manner. We validate TPN on multiple benchmark datasets, on which it largely outperforms existing few-shot learning approaches and achieves the state-of-the-art results.