亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As the number of credit card users has increased, detecting fraud in this domain has become a vital issue. Previous literature has applied various supervised and unsupervised machine learning methods to find an effective fraud detection system. However, some of these methods require an enormous amount of time to achieve reasonable accuracy. In this paper, an Asexual Reproduction Optimization (ARO) approach was employed, which is a supervised method to detect credit card fraud. ARO refers to a kind of production in which one parent produces some offspring. By applying this method and sampling just from the majority class, the effectiveness of the classification is increased. A comparison to Artificial Immune Systems (AIS), which is one of the best methods implemented on current datasets, has shown that the proposed method is able to remarkably reduce the required training time and at the same time increase the recall that is important in fraud detection problems. The obtained results show that ARO achieves the best cost in a short time, and consequently, it can be considered a real-time fraud detection system.

相關內容

Graph Neural Networks (GNNs) have achieved notable success in learning from graph-structured data, owing to their ability to capture intricate dependencies and relationships between nodes. They excel in various applications, including semi-supervised node classification, link prediction, and graph generation. However, it is important to acknowledge that the majority of state-of-the-art GNN models are built upon the assumption of an in-distribution setting, which hinders their performance on real-world graphs with dynamic structures. In this article, we aim to assess the impact of training GNNs on localized subsets of the graph. Such restricted training data may lead to a model that performs well in the specific region it was trained on but fails to generalize and make accurate predictions for the entire graph. In the context of graph-based semi-supervised learning (SSL), resource constraints often lead to scenarios where the dataset is large, but only a portion of it can be labeled, affecting the model's performance. This limitation affects tasks like anomaly detection or spam detection when labeling processes are biased or influenced by human subjectivity. To tackle the challenges posed by localized training data, we approach the problem as an out-of-distribution (OOD) data issue by by aligning the distributions between the training data, which represents a small portion of labeled data, and the graph inference process that involves making predictions for the entire graph. We propose a regularization method to minimize distributional discrepancies between localized training data and graph inference, improving model performance on OOD data. Extensive tests on popular GNN models show significant performance improvement on three citation GNN benchmark datasets. The regularization approach effectively enhances model adaptation and generalization, overcoming challenges posed by OOD data.

The existing deepfake detection methods have reached a bottleneck in generalizing to unseen forgeries and manipulation approaches. Based on the observation that the deepfake detectors exhibit a preference for overfitting the specific primary regions in input, this paper enhances the generalization capability from a novel regularization perspective. This can be simply achieved by augmenting the images through primary region removal, thereby preventing the detector from over-relying on data bias. Our method consists of two stages, namely the static localization for primary region maps, as well as the dynamic exploitation of primary region masks. The proposed method can be seamlessly integrated into different backbones without affecting their inference efficiency. We conduct extensive experiments over three widely used deepfake datasets - DFDC, DF-1.0, and Celeb-DF with five backbones. Our method demonstrates an average performance improvement of 6% across different backbones and performs competitively with several state-of-the-art baselines.

One of the most challenging fields where Artificial Intelligence (AI) can be applied is lung cancer research, specifically non-small cell lung cancer (NSCLC). In particular, overall survival (OS) is a vital indicator of patient status, helping to identify subgroups with diverse survival probabilities, enabling tailored treatment and improved OS rates. In this analysis, there are two challenges to take into account. First, few studies effectively exploit the information available from each patient, leveraging both uncensored (i.e., dead) and censored (i.e., survivors) patients, considering also the death times. Second, the handling of incomplete data is a common issue in the medical field. This problem is typically tackled through the use of imputation methods. Our objective is to present an AI model able to overcome these limits, effectively learning from both censored and uncensored patients and their available features, for the prediction of OS for NSCLC patients. We present a novel approach to survival analysis in the context of NSCLC, which exploits the strengths of the transformer architecture accounting for only available features without requiring any imputation strategy. By making use of ad-hoc losses for OS, it accounts for both censored and uncensored patients, considering risks over time. We evaluated the results over a period of 6 years using different time granularities obtaining a Ct-index, a time-dependent variant of the C-index, of 71.97, 77.58 and 80.72 for time units of 1 month, 1 year and 2 years, respectively, outperforming all state-of-the-art methods regardless of the imputation method used.

Performance issues permeate large-scale cloud service systems, which can lead to huge revenue losses. To ensure reliable performance, it's essential to accurately identify and localize these issues using service monitoring metrics. Given the complexity and scale of modern cloud systems, this task can be challenging and may require extensive expertise and resources beyond the capacity of individual humans. Some existing methods tackle this problem by analyzing each metric independently to detect anomalies. However, this could incur overwhelming alert storms that are difficult for engineers to diagnose manually. To pursue better performance, not only the temporal patterns of metrics but also the correlation between metrics (i.e., relational patterns) should be considered, which can be formulated as a multivariate metrics anomaly detection problem. However, most of the studies fall short of extracting these two types of features explicitly. Moreover, there exist some unlabeled anomalies mixed in the training data, which may hinder the detection performance. To address these limitations, we propose the Relational- Temporal Anomaly Detection Model (RTAnomaly) that combines the relational and temporal information of metrics. RTAnomaly employs a graph attention layer to learn the dependencies among metrics, which will further help pinpoint the anomalous metrics that may cause the anomaly effectively. In addition, we exploit the concept of positive unlabeled learning to address the issue of potential anomalies in the training data. To evaluate our method, we conduct experiments on a public dataset and two industrial datasets. RTAnomaly outperforms all the baseline models by achieving an average F1 score of 0.929 and Hit@3 of 0.920, demonstrating its superiority.

Research is facing a reproducibility crisis, in which the results and findings of many studies are difficult or even impossible to reproduce. This is also the case in machine learning (ML) and artificial intelligence (AI) research. Often, this is the case due to unpublished data and/or source-code, and due to sensitivity to ML training conditions. Although different solutions to address this issue are discussed in the research community such as using ML platforms, the level of reproducibility in ML-driven research is not increasing substantially. Therefore, in this mini survey, we review the literature on reproducibility in ML-driven research with three main aims: (i) reflect on the current situation of ML reproducibility in various research fields, (ii) identify reproducibility issues and barriers that exist in these research fields applying ML, and (iii) identify potential drivers such as tools, practices, and interventions that support ML reproducibility. With this, we hope to contribute to decisions on the viability of different solutions for supporting ML reproducibility.

Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Breast cancer remains a global challenge, causing over 1 million deaths globally in 2018. To achieve earlier breast cancer detection, screening x-ray mammography is recommended by health organizations worldwide and has been estimated to decrease breast cancer mortality by 20-40%. Nevertheless, significant false positive and false negative rates, as well as high interpretation costs, leave opportunities for improving quality and access. To address these limitations, there has been much recent interest in applying deep learning to mammography; however, obtaining large amounts of annotated data poses a challenge for training deep learning models for this purpose, as does ensuring generalization beyond the populations represented in the training dataset. Here, we present an annotation-efficient deep learning approach that 1) achieves state-of-the-art performance in mammogram classification, 2) successfully extends to digital breast tomosynthesis (DBT; "3D mammography"), 3) detects cancers in clinically-negative prior mammograms of cancer patients, 4) generalizes well to a population with low screening rates, and 5) outperforms five-out-of-five full-time breast imaging specialists by improving absolute sensitivity by an average of 14%. Our results demonstrate promise towards software that can improve the accuracy of and access to screening mammography worldwide.

Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.

北京阿比特科技有限公司