亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning-based natural language processing (NLP) models, particularly pre-trained language models (PLMs), have been revealed to be vulnerable to adversarial attacks. However, the adversarial examples generated by many mainstream word-level adversarial attack models are neither valid nor natural, leading to the loss of semantic maintenance, grammaticality, and human imperceptibility. Based on the exceptional capacity of language understanding and generation of large language models (LLMs), we propose LLM-Attack, which aims at generating both valid and natural adversarial examples with LLMs. The method consists of two stages: word importance ranking (which searches for the most vulnerable words) and word synonym replacement (which substitutes them with their synonyms obtained from LLMs). Experimental results on the Movie Review (MR), IMDB, and Yelp Review Polarity datasets against the baseline adversarial attack models illustrate the effectiveness of LLM-Attack, and it outperforms the baselines in human and GPT-4 evaluation by a significant margin. The model can generate adversarial examples that are typically valid and natural, with the preservation of semantic meaning, grammaticality, and human imperceptibility.

相關內容

Most deep-learning-based continuous sign language recognition (CSLR) models share a similar backbone consisting of a visual module, a sequential module, and an alignment module. However, due to limited training samples, a connectionist temporal classification loss may not train such CSLR backbones sufficiently. In this work, we propose three auxiliary tasks to enhance the CSLR backbones. The first task enhances the visual module, which is sensitive to the insufficient training problem, from the perspective of consistency. Specifically, since the information of sign languages is mainly included in signers' facial expressions and hand movements, a keypoint-guided spatial attention module is developed to enforce the visual module to focus on informative regions, i.e., spatial attention consistency. Second, noticing that both the output features of the visual and sequential modules represent the same sentence, to better exploit the backbone's power, a sentence embedding consistency constraint is imposed between the visual and sequential modules to enhance the representation power of both features. We name the CSLR model trained with the above auxiliary tasks as consistency-enhanced CSLR, which performs well on signer-dependent datasets in which all signers appear during both training and testing. To make it more robust for the signer-independent setting, a signer removal module based on feature disentanglement is further proposed to remove signer information from the backbone. Extensive ablation studies are conducted to validate the effectiveness of these auxiliary tasks. More remarkably, with a transformer-based backbone, our model achieves state-of-the-art or competitive performance on five benchmarks, PHOENIX-2014, PHOENIX-2014-T, PHOENIX-2014-SI, CSL, and CSL-Daily. Code and Models are available at //github.com/2000ZRL/LCSA_C2SLR_SRM.

Despite the remarkable ability of large language models (LLMs) in language comprehension and generation, they often suffer from producing factually incorrect information, also known as hallucination. A promising solution to this issue is verifiable text generation, which prompts LLMs to generate content with citations for accuracy verification. However, verifiable text generation is non-trivial due to the focus-shifting phenomenon, the intricate reasoning needed to align the claim with correct citations, and the dilemma between the precision and breadth of retrieved documents. In this paper, we present VTG, an innovative framework for Verifiable Text Generation with evolving memory and self-reflection. VTG introduces evolving long short-term memory to retain both valuable documents and recent documents. A two-tier verifier equipped with an evidence finder is proposed to rethink and reflect on the relationship between the claim and citations. Furthermore, active retrieval and diverse query generation are utilized to enhance both the precision and breadth of the retrieved documents. We conduct extensive experiments on five datasets across three knowledge-intensive tasks and the results reveal that VTG significantly outperforms baselines.

The training paradigm for machine translation has gradually shifted, from learning neural machine translation (NMT) models with extensive parallel corpora to instruction finetuning on pretrained multilingual large language models (LLMs) with high-quality translation pairs. In this paper, we focus on boosting the many-to-many multilingual translation performance of LLMs with an emphasis on zero-shot translation directions. We demonstrate that prompt strategies adopted during instruction finetuning are crucial to zero-shot translation performance and introduce a cross-lingual consistency regularization, XConST, to bridge the representation gap among different languages and improve zero-shot translation performance. XConST is not a new method, but a version of CrossConST (Gao et al., 2023a) adapted for multilingual finetuning on LLMs with translation instructions. Experimental results on ALMA (Xu et al., 2023) and LLaMA-2 (Touvron et al., 2023) show that our approach consistently improves translation performance. Our implementations are available at //github.com/gpengzhi/CrossConST-LLM.

Large language models (LLMs) have drastically changed the possible ways to design intelligent systems, shifting the focuses from massive data acquisition and new modeling training to human alignment and strategical elicitation of the full potential of existing pre-trained models. This paradigm shift, however, is not fully realized in financial sentiment analysis (FSA), due to the discriminative nature of this task and a lack of prescriptive knowledge of how to leverage generative models in such a context. This study investigates the effectiveness of the new paradigm, i.e., using LLMs without fine-tuning for FSA. Rooted in Minsky's theory of mind and emotions, a design framework with heterogeneous LLM agents is proposed. The framework instantiates specialized agents using prior domain knowledge of the types of FSA errors and reasons on the aggregated agent discussions. Comprehensive evaluation on FSA datasets show that the framework yields better accuracies, especially when the discussions are substantial. This study contributes to the design foundations and paves new avenues for LLMs-based FSA. Implications on business and management are also discussed.

Although large language models (LLMs) have shown surprising language understanding and generation capabilities, they have yet to gain a revolutionary advancement in the field of machine translation. One potential cause of the limited performance is the misalignment between the translation-specific understanding and general understanding inside LLMs. To align the translation-specific understanding to the general one, we propose a novel translation process xIoD (Cross-Lingual Interpretation of Difficult words), explicitly incorporating the general understanding on the content incurring inconsistent understanding to guide the translation. Specifically, xIoD performs the cross-lingual interpretation for the difficult-to-translate words and enhances the translation with the generated interpretations. Furthermore, we reframe the external tools of QE to tackle the challenges of xIoD in the detection of difficult words and the generation of helpful interpretations. We conduct experiments on the self-constructed benchmark ChallengeMT, which includes cases in which multiple SOTA translation systems consistently underperform. Experimental results show the effectiveness of our xIoD, which improves up to +3.85 COMET.

Large language models (LLMs) and multimodal large language models (MLLMs) have shown excellent general capabilities, even exhibiting adaptability in many professional domains such as law, economics, transportation, and medicine. Currently, many domain-specific benchmarks have been proposed to verify the performance of (M)LLMs in specific fields. Among various domains, transportation plays a crucial role in modern society as it impacts the economy, the environment, and the quality of life for billions of people. However, it is unclear how much traffic knowledge (M)LLMs possess and whether they can reliably perform transportation-related tasks. To address this gap, we propose TransportationGames, a carefully designed and thorough evaluation benchmark for assessing (M)LLMs in the transportation domain. By comprehensively considering the applications in real-world scenarios and referring to the first three levels in Bloom's Taxonomy, we test the performance of various (M)LLMs in memorizing, understanding, and applying transportation knowledge by the selected tasks. The experimental results show that although some models perform well in some tasks, there is still much room for improvement overall. We hope the release of TransportationGames can serve as a foundation for future research, thereby accelerating the implementation and application of (M)LLMs in the transportation domain.

Finetuned large language models (such as ChatGPT and Qwen-chat) can generate Chinese classical poetry following human's instructions. LLMs perform well in content, but are usually lacking in format, with occasionally excess or insufficient number of characters in each line. Since most SOTA LLMs are token-based, we assume that the format inaccuracy is due to the difficulty of the "token planning" task, which means that the LLM need to know exactly how much characters are contained in each token and do length-control planning based on that knowledge. In this paper, we first confirm our assumption by showing that existing token-based large language models has limited knowledge on token-character relationship. We use a spelling bee probing procedure, and find that Qwen-chat failed in nearly 15% Chinese spelling test. We then show that a token-based model can be easily tailored into a token-free model (in terms of Chinese), which can largely solve the format accuracy problem. Our tailoring procedure removes long-tokens from the vocabulary and the language model head, and keeps only character-level or byte-level tokens. As part of our contribution, we release the finetuned token-free model (which is based on Qwen-chat-7B), which can generate chinese classical poetry following complex instructions like LLMs (such as story paraphrasing), and also perform well in format. On the test set, our token-free model achives an format accuracy of 0.96, compared to 0.84 for token-based equivalents and 0.38 for GPT-4.

Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.

Deploying large language models (LLMs) is challenging because they are memory inefficient and compute-intensive for practical applications. In reaction, researchers train smaller task-specific models by either finetuning with human labels or distilling using LLM-generated labels. However, finetuning and distillation require large amounts of training data to achieve comparable performance to LLMs. We introduce Distilling step-by-step, a new mechanism that (a) trains smaller models that outperform LLMs, and (b) achieves so by leveraging less training data needed by finetuning or distillation. Our method extracts LLM rationales as additional supervision for small models within a multi-task training framework. We present three findings across 4 NLP benchmarks: First, compared to both finetuning and distillation, our mechanism achieves better performance with much fewer labeled/unlabeled training examples. Second, compared to LLMs, we achieve better performance using substantially smaller model sizes. Third, we reduce both the model size and the amount of data required to outperform LLMs; our 770M T5 model outperforms the 540B PaLM model using only 80% of available data on a benchmark task.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

北京阿比特科技有限公司