Given the Fourier-Legendre expansions of $f$ and $g$, and mild conditions on $f$ and $g$, we derive the Fourier-Legendre expansion of their product in terms of their corresponding Fourier-Legendre coefficients. In this way, expansions of whole number powers of $f$ may be obtained. We establish upper bounds on rates of convergence. We then employ these expansions to solve semi-analytically a class of nonlinear PDEs with a polynomial nonlinearity of degree 2. The obtained numerical results illustrate the efficiency and performance accuracy of this Fourier-Legendre based solution methodology for solving an important class of nonlinear PDEs.
Runtime analysis, as a branch of the theory of AI, studies how the number of iterations algorithms take before finding a solution (its runtime) depends on the design of the algorithm and the problem structure. Drift analysis is a state-of-the-art tool for estimating the runtime of randomised algorithms, such as evolutionary and bandit algorithms. Drift refers roughly to the expected progress towards the optimum per iteration. This paper considers the problem of deriving concentration tail-bounds on the runtime/regret of algorithms. It provides a novel drift theorem that gives precise exponential tail-bounds given positive, weak, zero and even negative drift. Previously, such exponential tail bounds were missing in the case of weak, zero, or negative drift. Our drift theorem can be used to prove a strong concentration of the runtime/regret of algorithms in AI. For example, we prove that the regret of the \rwab bandit algorithm is highly concentrated, while previous analyses only considered the expected regret. This means that the algorithm obtains the optimum within a given time frame with high probability, i.e. a form of algorithm reliability. Moreover, our theorem implies that the time needed by the co-evolutionary algorithm RLS-PD to obtain a Nash equilibrium in a \bilinear max-min-benchmark problem is highly concentrated. However, we also prove that the algorithm forgets the Nash equilibrium, and the time until this occurs is highly concentrated. This highlights a weakness in the RLS-PD which should be addressed by future work.
Channel simulation algorithms can efficiently encode random samples from a prescribed target distribution $Q$ and find applications in machine learning-based lossy data compression. However, algorithms that encode exact samples usually have random runtime, limiting their applicability when a consistent encoding time is desirable. Thus, this paper considers approximate schemes with a fixed runtime instead. First, we strengthen a result of Agustsson and Theis and show that there is a class of pairs of target distribution $Q$ and coding distribution $P$, for which the runtime of any approximate scheme scales at least super-polynomially in $D_\infty[Q \Vert P]$. We then show, by contrast, that if we have access to an unnormalised Radon-Nikodym derivative $r \propto dQ/dP$ and knowledge of $D_{KL}[Q \Vert P]$, we can exploit global-bound, depth-limited A* coding to ensure $\mathrm{TV}[Q \Vert P] \leq \epsilon$ and maintain optimal coding performance with a sample complexity of only $\exp_2\big((D_{KL}[Q \Vert P] + o(1)) \big/ \epsilon\big)$.
Solving a system of $m$ multivariate quadratic equations in $n$ variables over finite fields (the MQ problem) is one of the important problems in the theory of computer science. The XL algorithm (XL for short) is a major approach for solving the MQ problem with linearization over a coefficient field. Furthermore, the hybrid approach with XL (h-XL) is a variant of XL guessing some variables beforehand. In this paper, we present a variant of h-XL, which we call the \textit{polynomial XL (PXL)}. In PXL, the whole $n$ variables are divided into $k$ variables to be fixed and the remaining $n-k$ variables as ``main variables'', and we generate a Macaulay matrix with respect to the $n-k$ main variables over a polynomial ring of the $k$ (sub-)variables. By eliminating some columns of the Macaulay matrix over the polynomial ring before guessing $k$ variables, the amount of operations required for each guessed value can be reduced compared with h-XL. Our complexity analysis of PXL (under some practical assumptions and heuristics) gives a new theoretical bound, and it indicates that PXL could be more efficient than other algorithms in theory on the random system with $n=m$, which is the case of general multivariate signatures. For example, on systems over the finite field with ${2^8}$ elements with $n=m=80$, the numbers of operations deduced from the theoretical bounds of the hybrid approaches with XL and Wiedemann XL, Crossbred, and PXL with optimal $k$ are estimated as $2^{252}$, $2^{234}$, $2^{237}$, and $2^{220}$, respectively.
We provide mechanisms and new metric distortion bounds for line-up elections. In such elections, a set of $n$ voters, $k$ candidates, and $\ell$ positions are all located in a metric space. The goal is to choose a set of candidates and assign them to different positions, so as to minimize the total cost of the voters. The cost of each voter consists of the distances from itself to the chosen candidates (measuring how much the voter likes the chosen candidates, or how similar it is to them), as well as the distances from the candidates to the positions they are assigned to (measuring the fitness of the candidates for their positions). Our mechanisms, however, do not know the exact distances, and instead produce good outcomes while only using a smaller amount of information, resulting in small distortion. We consider several different types of information: ordinal voter preferences, ordinal position preferences, and knowing the exact locations of candidates and positions, but not those of voters. In each of these cases, we provide constant distortion bounds, thus showing that only a small amount of information is enough to form outcomes close to optimum in line-up elections.
The $\Sigma$-QMAC problem is introduced, involving $S$ servers, $K$ classical ($\mathbb{F}_d$) data streams, and $T$ independent quantum systems. Data stream ${\sf W}_k, k\in[K]$ is replicated at a subset of servers $\mathcal{W}(k)\subset[S]$, and quantum system $\mathcal{Q}_t, t\in[T]$ is distributed among a subset of servers $\mathcal{E}(t)\subset[S]$ such that Server $s\in\mathcal{E}(t)$ receives subsystem $\mathcal{Q}_{t,s}$ of $\mathcal{Q}_t=(\mathcal{Q}_{t,s})_{s\in\mathcal{E}(t)}$. Servers manipulate their quantum subsystems according to their data and send the subsystems to a receiver. The total download cost is $\sum_{t\in[T]}\sum_{s\in\mathcal{E}(t)}\log_d|\mathcal{Q}_{t,s}|$ qudits, where $|\mathcal{Q}|$ is the dimension of $\mathcal{Q}$. The states and measurements of $(\mathcal{Q}_t)_{t\in[T]}$ are required to be separable across $t\in[T]$ throughout, but for each $t\in[T]$, the subsystems of $\mathcal{Q}_{t}$ can be prepared initially in an arbitrary (independent of data) entangled state, manipulated arbitrarily by the respective servers, and measured jointly by the receiver. From the measurements, the receiver must recover the sum of all data streams. Rate is defined as the number of dits ($\mathbb{F}_d$ symbols) of the desired sum computed per qudit of download. The capacity of $\Sigma$-QMAC, i.e., the supremum of achievable rates is characterized for arbitrary data replication and entanglement distribution maps $\mathcal{W}, \mathcal{E}$. Coding based on the $N$-sum box abstraction is optimal in every case. Notably, for every $S\neq 3$ there exists an instance of the $\Sigma$-QMAC where $S$-party entanglement is necessary to achieve the fully entangled capacity.
In continuation of an earlier study, we explore a Neymann-Pearson hypothesis testing scenario where, under the null hypothesis ($\cal{H}_0$), the received signal is a white noise process $N_t$, which is not Gaussian in general, and under the alternative hypothesis ($\cal{H}_1$), the received signal comprises a deterministic transmitted signal $s_t$ corrupted by additive white noise, the sum of $N_t$ and another noise process originating from the transmitter, denoted as $Z_t$, which is not necessarily Gaussian either. Our approach focuses on detectors that are based on the correlation and energy of the received signal, which are motivated by implementation simplicity. We optimize the detector parameters to achieve the best trade-off between missed-detection and false-alarm error exponents. First, we optimize the detectors for a given signal, resulting in a non-linear relation between the signal and correlator weights to be optimized. Subsequently, we optimize the transmitted signal and the detector parameters jointly, revealing that the optimal signal is a balanced ternary signal and the correlator has at most three different coefficients, thus facilitating a computationally feasible solution.
We study local filters for the Lipschitz property of real-valued functions $f: V \to [0,r]$, where the Lipschitz property is defined with respect to an arbitrary undirected graph $G=(V,E)$. We give nearly optimal local Lipschitz filters both with respect to $\ell_1$-distance and $\ell_0$-distance. Previous work only considered unbounded-range functions over $[n]^d$. Jha and Raskhodnikova (SICOMP `13) gave an algorithm for such functions with lookup complexity exponential in $d$, which Awasthi et al. (ACM Trans. Comput. Theory) showed was necessary in this setting. We demonstrate that important applications of local Lipschitz filters can be accomplished with filters for functions with bounded-range. For functions $f: [n]^d\to [0,r]$, we circumvent the lower bound and achieve running time $(d^r\log n)^{O(\log r)}$ for the $\ell_1$-respecting filter and $d^{O(r)}\text{polylog } n$ for the $\ell_0$-respecting filter. Our local filters provide a novel Lipschitz extension that can be implemented locally. Furthermore, we show that our algorithms have nearly optimal dependence on $r$ for the domain $\{0,1\}^d$. In addition, our lower bound resolves an open question of Awasthi et al., removing one of the conditions necessary for their lower bound for general range. We prove our lower bound via a reduction from distribution-free Lipschitz testing and a new technique for proving hardness for adaptive algorithms. We provide two applications of our local filters to arbitrary real-valued functions. In the first application, we use them in conjunction with the Laplace mechanism for differential privacy and noisy binary search to provide mechanisms for privately releasing outputs of black-box functions, even in the presence of malicious clients. In the second application, we use our local filters to obtain the first nontrivial tolerant tester for the Lipschitz property.
Folklore in complexity theory suspects that circuit lower bounds against $\mathbf{NC}^1$ or $\mathbf{P}/\operatorname{poly}$, currently out of reach, are a necessary step towards proving strong proof complexity lower bounds for systems like Frege or Extended Frege. Establishing such a connection formally, however, is already daunting, as it would imply the breakthrough separation $\mathbf{NEXP} \not\subseteq \mathbf{P}/\operatorname{poly}$, as recently observed by Pich and Santhanam (2023). We show such a connection conditionally for the Implicit Extended Frege proof system ($\mathsf{iEF}$) introduced by Kraj\'i\v{c}ek (The Journal of Symbolic Logic, 2004), capable of formalizing most of contemporary complexity theory. In particular, we show that if $\mathsf{iEF}$ proves efficiently the standard derandomization assumption that a concrete Boolean function is hard on average for subexponential-size circuits, then any superpolynomial lower bound on the length of $\mathsf{iEF}$ proofs implies $\#\mathbf{P} \not\subseteq \mathbf{FP}/\operatorname{poly}$ (which would in turn imply, for example, $\mathbf{PSPACE} \not\subseteq \mathbf{P}/\operatorname{poly}$). Our proof exploits the formalization inside $\mathsf{iEF}$ of the soundness of the sum-check protocol of Lund, Fortnow, Karloff, and Nisan (Journal of the ACM, 1992). This has consequences for the self-provability of circuit upper bounds in $\mathsf{iEF}$. Interestingly, further improving our result seems to require progress in constructing interactive proof systems with more efficient provers.
We build a finite volume scheme for the scalar conservation law $\partial_t u + \partial_x (H(x, u)) = 0$ with bounded initial condition for a wide class of flux function $H$, convex with respect to the second variable. The main idea for the construction of the scheme is to use the theory of discontinuous flux. We prove that the resulting approximating sequence converges boundedly almost everywhere on $\mathopen]0, +\infty\mathclose[$ to the entropy solution.
If $G$ is a group, we say a subset $S$ of $G$ is product-free if the equation $xy=z$ has no solutions with $x,y,z \in S$. For $D \in \mathbb{N}$, a group $G$ is said to be $D$-quasirandom if the minimal dimension of a nontrivial complex irreducible representation of $G$ is at least $D$. Gowers showed that in a $D$-quasirandom finite group $G$, the maximal size of a product-free set is at most $|G|/D^{1/3}$. This disproved a longstanding conjecture of Babai and S\'os from 1985. For the special unitary group, $G=SU(n)$, Gowers observed that his argument yields an upper bound of $n^{-1/3}$ on the measure of a measurable product-free subset. In this paper, we improve Gowers' upper bound to $\exp(-cn^{1/3})$, where $c>0$ is an absolute constant. In fact, we establish something stronger, namely, product-mixing for measurable subsets of $SU(n)$ with measure at least $\exp(-cn^{1/3})$; for this product-mixing result, the $n^{1/3}$ in the exponent is sharp. Our approach involves introducing novel hypercontractive inequalities, which imply that the non-Abelian Fourier spectrum of the indicator function of a small set concentrates on high-dimensional irreducible representations. Our hypercontractive inequalities are obtained via methods from representation theory, harmonic analysis, random matrix theory and differential geometry. We generalize our hypercontractive inequalities from $SU(n)$ to an arbitrary $D$-quasirandom compact connected Lie group for $D$ at least an absolute constant, thereby extending our results on product-free sets to such groups. We also demonstrate various other applications of our inequalities to geometry (viz., non-Abelian Brunn-Minkowski type inequalities), mixing times, and the theory of growth in compact Lie groups.