Ubiquitous sensors today emit high frequency streams of numerical measurements that reflect properties of human, animal, industrial, commercial, and natural processes. Shifts in such processes, e.g. caused by external events or internal state changes, manifest as changes in the recorded signals. The task of streaming time series segmentation (STSS) is to partition the stream into consecutive variable-sized segments that correspond to states of the observed processes or entities. The partition operation itself must in performance be able to cope with the input frequency of the signals. We introduce ClaSS, a novel, efficient, and highly accurate algorithm for STSS. ClaSS assesses the homogeneity of potential partitions using self-supervised time series classification and applies statistical tests to detect significant change points (CPs). In our experimental evaluation using two large benchmarks and six real-world data archives, we found ClaSS to be significantly more precise than eight state-of-the-art competitors. Its space and time complexity is independent of segment sizes and linear only in the sliding window size. We also provide ClaSS as a window operator with an average throughput of 538 data points per second for the Apache Flink streaming engine.
With the rapid progress in virtual reality (VR) technology, the scope of VR applications has greatly expanded across various domains. However, the superiority of VR training over traditional methods and its impact on learning efficacy are still uncertain. To investigate whether VR training is more effective than traditional methods, we designed virtual training systems for mechanical assembly on both VR and desktop platforms, subsequently conducting pre-test and post-test experiments. A cohort of 53 students, all enrolled in engineering drawing course without prior knowledge distinctions, was randomly divided into three groups: physical training, desktop virtual training, and immersive VR training. Our investigation utilized analysis of covariance (ANCOVA) to examine the differences in post-test scores among the three groups while controlling for pre-test scores. The group that received VR training showed the highest scores on the post-test. Another facet of our study delved into the presence of the virtual system. We developed a specialized scale to assess this aspect for our research objectives. Our findings indicate that VR training can enhance the sense of presence, particularly in terms of sensory factors and realism factors. Moreover, correlation analysis uncovers connections between the various dimensions of presence. This study confirms that using VR training can improve learning efficacy and the presence in the context of mechanical assembly, surpassing traditional training methods. Furthermore, it provides empirical evidence supporting the integration of VR technology in higher education and engineering training. This serves as a reference for the practical application of VR technology in different fields.
The enormous amount of data to be represented using large graphs exceeds in some cases the resources of a conventional computer. Edges in particular can take up a considerable amount of memory as compared to the number of nodes. However, rigorous edge storage might not always be essential to be able to draw the needed conclusions. A similar problem takes records with many variables and attempts to extract the most discernible features. It is said that the ``dimension'' of this data is reduced. Following an approach with the same objective in mind, we can map a graph representation to a $k$-dimensional space and answer queries of neighboring nodes mainly by measuring Euclidean distances. The accuracy of our answers would decrease but would be compensated for by fuzzy logic which gives an idea about the likelihood of error. This method allows for reasonable representation in memory while maintaining a fair amount of useful information, and allows for concise embedding in $k$-dimensional Euclidean space as well as solving some problems without having to decompress the graph. Of particular interest is the case where $k=2$. Promising highly accurate experimental results are obtained and reported.
Handwriting recognition is a key technology for accessing the content of old manuscripts, helping to preserve cultural heritage. Deep learning shows an impressive performance in solving this task. However, to achieve its full potential, it requires a large amount of labeled data, which is difficult to obtain for ancient languages and scripts. Often, a trade-off has to be made between ground truth quantity and quality, as is the case for the recently introduced Bullinger database. It contains an impressive amount of over a hundred thousand labeled text line images of mostly premodern German and Latin texts that were obtained by automatically aligning existing page-level transcriptions with text line images. However, the alignment process introduces systematic errors, such as wrongly hyphenated words. In this paper, we investigate the impact of such errors on training and evaluation and suggest means to detect and correct typical alignment errors.
Formally verifying the properties of formal systems using a proof assistant requires justifying numerous minor lemmas about capture-avoiding substitution. Despite work on category-theoretic accounts of syntax and variable binding, raw, first-order representations of syntax, the kind considered by many practitioners and compiler frontends, have received relatively little attention. Therefore applications miss out on the benefits of category theory, most notably the promise of reusing formalized infrastructural lemmas between implementations of different systems. Our Coq framework Tealeaves provides libraries of reusable infrastructure for a raw, locally nameless representation and can be extended to other representations in a modular fashion. In this paper we give a string-diagrammatic account of decorated traversable monads (DTMs), the key abstraction implemented by Tealeaves. We define DTMs as monoids of structured endofunctors before proving a representation theorem a la Kleisli, yielding a recursion combinator for finitary tree-like datatypes.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.