亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Training an image captioner without annotated image-sentence pairs has gained traction in recent years. Previous approaches can be categorized into two strategies: crawling sentences from mismatching corpora and aligning them with the given images as pseudo annotations, or pre-training the captioner using external image-text pairs. However, the aligning setting seems to reach its performance limit due to the quality problem of pairs, and pre-training requires significant computational resources. To address these challenges, we propose a new strategy ``LPM + retrieval-augmented learning" where the prior knowledge from large pre-trained models (LPMs) is leveraged as supervision, and a retrieval process is integrated to further reinforce its effectiveness. Specifically, we introduce Retrieval-augmented Pseudo Sentence Generation (RaPSG), which adopts an efficient approach to retrieve highly relevant short region descriptions from the mismatching corpora and use them to generate a variety of pseudo sentences with distinct representations as well as high quality via LPMs. In addition, a fluency filter and a CLIP-guided training objective are further introduced to facilitate model optimization. Experimental results demonstrate that our method surpasses the SOTA pre-training model (Flamingo3B) by achieving a CIDEr score of 78.1 (+5.1) while utilizing only 0.3% of its trainable parameters (1.3B VS 33M). Importantly, our approach eliminates the need of computationally expensive pre-training processes on external datasets (e.g., the requirement of 312M image-text pairs for Flamingo3B). We further show that with a simple extension, the generated pseudo sentences can be deployed as weak supervision to boost the 1% semi-supervised image caption benchmark up to 93.4 CIDEr score (+8.9) which showcases the versatility and effectiveness of our approach.

相關內容

圖(tu)像字幕(Image Captioning),是指從圖(tu)像生成文本(ben)描述的(de)過程,主(zhu)要根據(ju)圖(tu)像中物體和(he)物體的(de)動作。

Image denoising is a fundamental and challenging task in the field of computer vision. Most supervised denoising methods learn to reconstruct clean images from noisy inputs, which have intrinsic spectral bias and tend to produce over-smoothed and blurry images. Recently, researchers have explored diffusion models to generate high-frequency details in image restoration tasks, but these models do not guarantee that the generated texture aligns with real images, leading to undesirable artifacts. To address the trade-off between visual appeal and fidelity of high-frequency details in denoising tasks, we propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG). Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal, which serves as the initial estimation for subsequent steps to maintain fidelity. Additionally, it employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality. We further introduce a two-stage training scheme to ensure effective collaboration between the reconstructive and generative modules of RnG. To reduce undesirable texture introduced by the diffusion model, we also propose an adaptive step controller that regulates the number of inverse steps applied by the diffusion model, allowing control over the level of high-frequency details added to each patch as well as saving the inference computational cost. Through our proposed RnG, we achieve a better balance between perception and distortion. We conducted extensive experiments on both synthetic and real denoising datasets, validating the superiority of the proposed approach.

A corresponding explosion in digital images has accompanied the rapid adoption of mobile technology around the world. People and their activities are routinely captured in digital image and video files. By their very nature, these images and videos often portray social and professional connections. Individuals in the same picture are often connected in some meaningful way. Our research seeks to identify and model social connections found in images using modern face detection technology and social network analysis. The proposed methods are then demonstrated on the public image repository associated with the 2022 Emmy's Award Presentation.

Due to the extremely low latency, events have been recently exploited to supplement lost information for motion deblurring. Existing approaches largely rely on the perfect pixel-wise alignment between intensity images and events, which is not always fulfilled in the real world. To tackle this problem, we propose a novel coarse-to-fine framework, named NETwork of Event-based motion Deblurring with STereo event and intensity cameras (St-EDNet), to recover high-quality images directly from the misaligned inputs, consisting of a single blurry image and the concurrent event streams. Specifically, the coarse spatial alignment of the blurry image and the event streams is first implemented with a cross-modal stereo matching module without the need for ground-truth depths. Then, a dual-feature embedding architecture is proposed to gradually build the fine bidirectional association of the coarsely aligned data and reconstruct the sequence of the latent sharp images. Furthermore, we build a new dataset with STereo Event and Intensity Cameras (StEIC), containing real-world events, intensity images, and dense disparity maps. Experiments on real-world datasets demonstrate the superiority of the proposed network over state-of-the-art methods.

Remote sensing image semantic segmentation is an important problem for remote sensing image interpretation. Although remarkable progress has been achieved, existing deep neural network methods suffer from the reliance on massive training data. Few-shot remote sensing semantic segmentation aims at learning to segment target objects from a query image using only a few annotated support images of the target class. Most existing few-shot learning methods stem primarily from their sole focus on extracting information from support images, thereby failing to effectively address the large variance in appearance and scales of geographic objects. To tackle these challenges, we propose a Self-Correlation and Cross-Correlation Learning Network for the few-shot remote sensing image semantic segmentation. Our model enhances the generalization by considering both self-correlation and cross-correlation between support and query images to make segmentation predictions. To further explore the self-correlation with the query image, we propose to adopt a classical spectral method to produce a class-agnostic segmentation mask based on the basic visual information of the image. Extensive experiments on two remote sensing image datasets demonstrate the effectiveness and superiority of our model in few-shot remote sensing image semantic segmentation. Code and models will be accessed at //github.com/linhanwang/SCCNet.

Weakly Supervised Semantic Segmentation (WSSS) relying only on image-level supervision is a promising approach to deal with the need for Segmentation networks, especially for generating a large number of pixel-wise masks in a given dataset. However, most state-of-the-art image-level WSSS techniques lack an understanding of the geometric features embedded in the images since the network cannot derive any object boundary information from just image-level labels. We define a boundary here as the line separating an object and its background, or two different objects. To address this drawback, we are proposing our novel ReFit framework, which deploys state-of-the-art class activation maps combined with various post-processing techniques in order to achieve fine-grained higher-accuracy segmentation masks. To achieve this, we investigate a state-of-the-art unsupervised segmentation network that can be used to construct a boundary map, which enables ReFit to predict object locations with sharper boundaries. By applying our method to WSSS predictions, we achieved up to 10% improvement over the current state-of-the-art WSSS methods for medical imaging. The framework is open-source, to ensure that our results are reproducible, and accessible online at //github.com/bharathprabakaran/ReFit.

Image cartoonization has attracted significant interest in the field of image generation. However, most of the existing image cartoonization techniques require re-training models using images of cartoon style. In this paper, we present CartoonDiff, a novel training-free sampling approach which generates image cartoonization using diffusion transformer models. Specifically, we decompose the reverse process of diffusion models into the semantic generation phase and the detail generation phase. Furthermore, we implement the image cartoonization process by normalizing high-frequency signal of the noisy image in specific denoising steps. CartoonDiff doesn't require any additional reference images, complex model designs, or the tedious adjustment of multiple parameters. Extensive experimental results show the powerful ability of our CartoonDiff. The project page is available at: //cartoondiff.github.io/

Blind image deblurring (BID) has been extensively studied in computer vision and adjacent fields. Modern methods for BID can be grouped into two categories: single-instance methods that deal with individual instances using statistical inference and numerical optimization, and data-driven methods that train deep-learning models to deblur future instances directly. Data-driven methods can be free from the difficulty in deriving accurate blur models, but are fundamentally limited by the diversity and quality of the training data -- collecting sufficiently expressive and realistic training data is a standing challenge. In this paper, we focus on single-instance methods that remain competitive and indispensable. However, most such methods do not prescribe how to deal with unknown kernel size and substantial noise, precluding practical deployment. Indeed, we show that several state-of-the-art (SOTA) single-instance methods are unstable when the kernel size is overspecified, and/or the noise level is high. On the positive side, we propose a practical BID method that is stable against both, the first of its kind. Our method builds on the recent ideas of solving inverse problems by integrating the physical models and structured deep neural networks, without extra training data. We introduce several crucial modifications to achieve the desired stability. Extensive empirical tests on standard synthetic datasets, as well as real-world NTIRE2020 and RealBlur datasets, show the superior effectiveness and practicality of our BID method compared to SOTA single-instance as well as data-driven methods. The code of our method is available at: \url{//github.com/sun-umn/Blind-Image-Deblurring}.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.

Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.

北京阿比特科技有限公司