亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The widespread adoption of distributed learning to train a global model from local data has been hindered by the challenge posed by stragglers. Recent attempts to mitigate this issue through gradient coding have proved difficult due to the large amounts of data redundancy, computational and communicational overhead it brings. Additionally, the complexity of encoding and decoding increases linearly with the number of local workers. In this paper, we present a lightweight coding method for the computing phase and a fair transmission protocol for the communication phase, to mitigate the straggler problem. A two-stage dynamic coding scheme is proposed for the computing phase, where partial gradients are computed by a portion of workers in the first stage and the remainder are decided based on their completion status in the first stage. To ensure fair communication, a perturbed Lyapunov function is designed to balance admission data fairness and maximize throughput. Extensive experimental results demonstrate the superiority of our proposed solution in terms of accuracy and resource utilization in the distributed learning system, even under practical network conditions and benchmark data.

相關內容

For problems in image processing and many other fields, a large class of effective neural networks has encoder-decoder-based architectures. Although these networks have made impressive performances, mathematical explanations of their architectures are still underdeveloped. In this paper, we study the encoder-decoder-based network architecture from the algorithmic perspective and provide a mathematical explanation. We use the two-phase Potts model for image segmentation as an example for our explanations. We associate the segmentation problem with a control problem in the continuous setting. Then, multigrid method and operator splitting scheme, the PottsMGNet, are used to discretize the continuous control model. We show that the resulting discrete PottsMGNet is equivalent to an encoder-decoder-based network. With minor modifications, it is shown that a number of the popular encoder-decoder-based neural networks are just instances of the proposed PottsMGNet. By incorporating the Soft-Threshold-Dynamics into the PottsMGNet as a regularizer, the PottsMGNet has shown to be robust with the network parameters such as network width and depth and achieved remarkable performance on datasets with very large noise. In nearly all our experiments, the new network always performs better or as good on accuracy and dice score than existing networks for image segmentation.

Despite the success of deep learning-based object detection methods in recent years, it is still challenging to make the object detector reliable in adverse weather conditions such as rain and snow. For the robust performance of object detectors, unsupervised domain adaptation has been utilized to adapt the detection network trained on clear weather images to adverse weather images. While previous methods do not explicitly address weather corruption during adaptation, the domain gap between clear and adverse weather can be decomposed into two factors with distinct characteristics: a style gap and a weather gap. In this paper, we present an unsupervised domain adaptation framework for object detection that can more effectively adapt to real-world environments with adverse weather conditions by addressing these two gaps separately. Our method resolves the style gap by concentrating on style-related information of high-level features using an attention module. Using self-supervised contrastive learning, our framework then reduces the weather gap and acquires instance features that are robust to weather corruption. Extensive experiments demonstrate that our method outperforms other methods for object detection in adverse weather conditions.

Before applying data analytics or machine learning to a data set, a vital step is usually the construction of an informative set of features from the data. In this paper, we present SMARTFEAT, an efficient automated feature engineering tool to assist data users, even non-experts, in constructing useful features. Leveraging the power of Foundation Models (FMs), our approach enables the creation of new features from the data, based on contextual information and open-world knowledge. To achieve this, our method incorporates an intelligent operator selector that discerns a subset of operators, effectively avoiding exhaustive combinations of original features, as is typically observed in traditional automated feature engineering tools. Moreover, we address the limitations of performing data tasks through row-level interactions with FMs, which could lead to significant delays and costs due to excessive API calls. To tackle this, we introduce a function generator that facilitates the acquisition of efficient data transformations, such as dataframe built-in methods or lambda functions, ensuring the applicability of SMARTFEAT to generate new features for large datasets. With SMARTFEAT, dataset users can efficiently search for and apply transformations to obtain new features, leading to improvements in the AUC of downstream ML classification by up to 29.8%.

In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models and can even learn general task-agnostic representations for efficient finetuning to downstream tasks. However, deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning. This paper provides an overview of model reprogramming to bridge this gap. Model reprogramming enables resource-efficient cross-domain machine learning by repurposing and reusing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning, where the source and target domains can be vastly different. In many applications, model reprogramming outperforms transfer learning and training from scratch. This paper elucidates the methodology of model reprogramming, summarizes existing use cases, provides a theoretical explanation of the success of model reprogramming, and concludes with a discussion on open-ended research questions and opportunities. A list of model reprogramming studies is actively maintained and updated at //github.com/IBM/model-reprogramming.

Unsupervised contrastive learning methods have recently seen significant improvements, particularly through data augmentation strategies that aim to produce robust and generalizable representations. However, prevailing data augmentation methods, whether hand designed or based on foundation models, tend to rely heavily on prior knowledge or external data. This dependence often compromises their effectiveness and efficiency. Furthermore, the applicability of most existing data augmentation strategies is limited when transitioning to other research domains, especially science-related data. This limitation stems from the paucity of prior knowledge and labeled data available in these domains. To address these challenges, we introduce DiffAug-a novel and efficient Diffusion-based data Augmentation technique. DiffAug aims to ensure that the augmented and original data share a smoothed latent space, which is achieved through diffusion steps. Uniquely, unlike traditional methods, DiffAug first mines sufficient prior semantic knowledge about the neighborhood. This provides a constraint to guide the diffusion steps, eliminating the need for labels, external data/models, or prior knowledge. Designed as an architecture-agnostic framework, DiffAug provides consistent improvements. Specifically, it improves image classification and clustering accuracy by 1.6%~4.5%. When applied to biological data, DiffAug improves performance by up to 10.1%, with an average improvement of 5.8%. DiffAug shows good performance in both vision and biological domains.

A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at //github.com/xinliu20/MEC.

Deep learning have achieved promising results on a wide spectrum of AI applications. Larger datasets and models consistently yield better performance. However, we generally spend longer training time on more computation and communication. In this survey, we aim to provide a clear sketch about the optimizations for large-scale deep learning with regard to the model accuracy and model efficiency. We investigate algorithms that are most commonly used for optimizing, elaborate the debatable topic of generalization gap arises in large-batch training, and review the SOTA strategies in addressing the communication overhead and reducing the memory footprints.

Recent advances in representation learning have demonstrated an ability to represent information from different modalities such as video, text, and audio in a single high-level embedding vector. In this work we present a self-supervised learning framework that is able to learn a representation that captures finer levels of granularity across different modalities such as concepts or events represented by visual objects or spoken words. Our framework relies on a discretized embedding space created via vector quantization that is shared across different modalities. Beyond the shared embedding space, we propose a Cross-Modal Code Matching objective that forces the representations from different views (modalities) to have a similar distribution over the discrete embedding space such that cross-modal objects/actions localization can be performed without direct supervision. In our experiments we show that the proposed discretized multi-modal fine-grained representation (e.g., pixel/word/frame) can complement high-level summary representations (e.g., video/sentence/waveform) for improved performance on cross-modal retrieval tasks. We also observe that the discretized representation uses individual clusters to represent the same semantic concept across modalities.

Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司