This paper centers around a simple yet crucial question for everyday users: How should one choose their delegated validators within proof-of-stake (PoS) protocols, particularly in the context of Ethereum 2.0? This has been a long-overlooked gap, as existing studies have primarily focused on inter-committee (validator set) behaviors and activities, while neglecting the dynamic formation of committees, especially for individual stakeholders seeking reliable validators. Our study bridges this gap by diving into the delegation process (normal users delegate their small-value tokens to delegatees who later act as validators) before entering an actual consensus phase. We propose a Bayesian model to quantify normal users' trust in delegatees, which we further incorporate into a game-theoretical model to simulate users' reactions against a set of critical factors identified through extensive research (including 10+ staking service provider as well as 30+ PoS blockchains). Our results reveal that users tend to choose their delegatees and utilize their tokens by carefully weighing the delegation cost, the behaviors of other users, and the reputation of delegatees, ultimately reaching a Nash equilibrium. Unfortunately, the collective trend significantly increases the likelihood of token concentration on a small number of delegatees.
Aiming at analyzing performance in cloud computing, some unpredictable perturbations which may lead to performance downgrade are essential factors that should not be neglected. To avoid performance downgrade in cloud computing system, it is reasonable to measure the impact of the perturbations, and further propose a robust scheduling strategy to maintain the performance of the system at an acceptable level. In this paper, we first describe the supply-demand relationship of service between cloud service providers and customers, in which the profit and waiting time are objectives they most concerned. Then, on the basis of introducing the lowest acceptable profit and longest acceptable waiting time for cloud service providers and customers respectively, we define a robustness metric method to declare that the number and speed of servers should be adequately configured in a feasible region, such that the performance of cloud computing system can stay at an acceptable level when it is subject to the perturbations. Subsequently, we discuss the robustness metric method in several cases, and propose heuristic optimization algorithm to enhance the robustness of the system as much as possible. At last, the performances of the proposed algorithm are validated by comparing with DE and PSO algorithm, the results show the superiority of the proposed algorithm.
In the present paper, we implement a message recovery attack to all variants of the NTRU cryptosystem. Our approach involves a reduction from the NTRU-lattice to a Voronoi First Kind lattice, enabling the application of a polynomial CVP exact algorithm crucial for executing the Message Recovery. The efficacy of our attack relies on a specific oracle that permits us to approximate an unknown quantity. Furthermore, we outline the mathematical conditions under which the attack is successful. Finally, we delve into a well-established polynomial algorithm for CVP on VFK lattices and its implementation, shedding light on its efficacy in our attack. Subsequently, we present comprehensive experimental results on the NTRU-HPS and the NTRU-Prime variants of the NIST submissions and propose a method that could indicate the resistance of the NTRU cryptosystem to our attack.
Counterfactual Explanations (CEs) help address the question: How can the factors that influence the prediction of a predictive model be changed to achieve a more favorable outcome from a user's perspective? Thus, they bear the potential to guide the user's interaction with AI systems since they represent easy-to-understand explanations. To be applicable, CEs need to be realistic and actionable. In the literature, various methods have been proposed to generate CEs. However, the majority of research on CEs focuses on classification problems where questions like "What should I do to get my rejected loan approved?" are raised. In practice, answering questions like "What should I do to increase my salary?" are of a more regressive nature. In this paper, we introduce a novel method to generate CEs for a pre-trained regressor by first disentangling the label-relevant from the label-irrelevant dimensions in the latent space. CEs are then generated by combining the label-irrelevant dimensions and the predefined output. The intuition behind this approach is that the ideal counterfactual search should focus on the label-irrelevant characteristics of the input and suggest changes toward target-relevant characteristics. Searching in the latent space could help achieve this goal. We show that our method maintains the characteristics of the query sample during the counterfactual search. In various experiments, we demonstrate that the proposed method is competitive based on different quality measures on image and tabular datasets in regression problem settings. It efficiently returns results closer to the original data manifold compared to three state-of-the-art methods, which is essential for realistic high-dimensional machine learning applications. Our code will be made available as an open-source package upon the publication of this work.
Large Language Models (LLMs) are widely used in critical fields such as healthcare, education, and finance due to their remarkable proficiency in various language-related tasks. However, LLMs are prone to generating factually incorrect responses or "hallucinations," which can lead to a loss of credibility and trust among users. To address this issue, we propose a multi-stage framework that generates the rationale first, verifies and refines incorrect ones, and uses them as supporting references to generate the answer. The generated rationale enhances the transparency of the answer and our framework provides insights into how the model arrived at this answer, by using this rationale and the references to the context. In this paper, we demonstrate its effectiveness in improving the quality of responses to drug-related inquiries in the life sciences industry. Our framework improves traditional Retrieval Augmented Generation (RAG) by enabling OpenAI GPT-3.5-turbo to be 14-25% more faithful and 16-22% more accurate on two datasets. Furthermore, fine-tuning samples based on our framework improves the accuracy of smaller open-access LLMs by 33-42% and competes with RAG on commercial models.
Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short for SeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.
The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.